Temperature dependence of the axial magnetic effect in two-color quenched QCD

被引:36
|
作者
Braguta, V. [1 ,2 ,3 ]
Chernodub, M. N. [4 ,5 ]
Goy, V. A. [6 ]
Landsteiner, K. [7 ]
Molochkov, A. V. [8 ]
Polikarpov, M. I. [2 ]
机构
[1] IHEP, Protvino 142284, Moscow Region, Russia
[2] NRC Kurchatov Inst, SSC RF ITEP, Moscow 117218, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[4] Univ Tours, CNRS, Lab Math & Phys Theor, Federat Denis Poisson, F-37200 Tours, France
[5] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[6] Far Eastern Fed Univ, Sch Nat Sci, Vladivostok 690950, Russia
[7] Univ Autonoma Madrid, CSIC, Inst Fis Teor, UAM, E-28049 Madrid, Spain
[8] Far Eastern Fed Univ, Sch Biomed, Vladivostok 690950, Russia
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 07期
关键词
EQUILIBRIUM; FIELD;
D O I
10.1103/PhysRevD.89.074510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The axial magnetic effect is the generation of an equilibrium dissipationless energy flow of chiral fermions in the direction of the axial (chiral) magnetic field. At finite temperature the dissipationless energy transfer may be realized in the absence of any chemical potentials. We numerically study the temperature behavior of the axial magnetic effect in quenched SUd2_ lattice gauge theory. We show that in the confinement (hadron) phase the effect is absent. In the deconfinement transition region the conductivity quickly increases, reaching the asymptotic T2 behavior in a deep deconfinement (plasma) phase. Apart from an overall proportionality factor, our results qualitatively agree with theoretical predictions for the behavior of the energy flow as a function of temperature and strength of the axial magnetic field.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Dense two-color QCD from Dyson-Schwinger equations
    Contant, Romain
    Huber, Markus Q.
    PHYSICAL REVIEW D, 2020, 101 (01)
  • [42] Polyakov-quark-meson-diquark model for two-color QCD
    Strodthoff, Nils
    von Smekal, Lorenz
    PHYSICS LETTERS B, 2014, 731 : 350 - 357
  • [43] Two-color QCD in 3D at finite baryon density
    Dunne, GV
    Nishigaki, SM
    NUCLEAR PHYSICS B, 2003, 654 (03) : 445 - 465
  • [44] Topology of the gauge-invariant gauge field in two-color QCD
    Haller, K
    Chen, LS
    Choi, YS
    PHYSICAL REVIEW D, 1999, 60 (12)
  • [45] Diquark and pion condensation in random matrix models for two-color QCD
    Klein, B
    Toublan, D
    Verbaarschot, JJM
    PHYSICAL REVIEW D, 2005, 72 (01): : 1 - 18
  • [46] Chiral random matrix theory for two-color QCD at high density
    Kanazawa, Takuya
    Wettig, Tilo
    Yamamoto, Naoki
    PHYSICAL REVIEW D, 2010, 81 (08):
  • [47] The θ-angle and axion physics of two-color QCD at fixed baryon charge
    Jahmall Bersini
    Alessandra D’Alise
    Francesco Sannino
    Matías Torres
    Journal of High Energy Physics, 2022
  • [48] Analytic continuation in two-color QCD: new results on the critical line
    Cea, P.
    Cosmai, L.
    D'Elia, M.
    Papa, A.
    NUCLEAR PHYSICS A, 2009, 820 : 239C - 242C
  • [49] The θ-angle and axion physics of two-color QCD at fixed baryon charge
    Bersini, Jahmall
    D'Alise, Alessandra
    Sannino, Francesco
    Torres, Matias
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (11)
  • [50] Characteristics of the eigenvalue distribution of the Dirac operator in dense two-color QCD
    Fukushima, Kenji
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):