Computational models reveal genotype-phenotype associations in Saccharomyces cerevisiae

被引:19
|
作者
Franco-Duarte, Ricardo [1 ]
Mendes, Ines [1 ]
Umek, Lan [2 ,3 ]
Drumonde-Neves, Joao [1 ,4 ]
Zupan, Blaz [3 ]
Schuller, Dorit [1 ]
机构
[1] Univ Minho, Ctr Mol & Environm Biol CBMA, Dept Biol, Braga, Portugal
[2] Univ Ljubljana, Fac Adm, Ljubljana 61000, Slovenia
[3] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 61000, Slovenia
[4] Univ Azores, Res Ctr Agr Technol, Dept Agr Sci, Angra Do Heroismo, Portugal
关键词
Saccharomyces cerevisiae; microsatellite; phenotypic characterization; data mining; nearest-neighbour classifier; WINE YEAST STRAINS; POPULATION-STRUCTURE; GENETIC DIVERSITY; GENOME; MICROSATELLITES; FERMENTATION; POLYMORPHISM; RESISTANCE; SELECTION; TRAITS;
D O I
10.1002/yea.3016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome sequencing is essential to understand individual variation and to study the mechanisms that explain relations between genotype and phenotype. The accumulated knowledge from large-scale genome sequencing projects of Saccharomyces cerevisiae isolates is being used to study the mechanisms that explain such relations. Our objective was to undertake genetic characterization of 172 S. cerevisiae strains from different geographical origins and technological groups, using 11 polymorphic microsatellites, and computationally relate these data with the results of 30 phenotypic tests. Genetic characterization revealed 280 alleles, with the microsatellite ScAAT1 contributing most to intrastrain variability, together with alleles 20, 9 and 16 from the microsatellites ScAAT4, ScAAT5 and ScAAT6. These microsatellite allelic profiles are characteristic for both the phenotype and origin of yeast strains. We confirm the strength of these associations by construction and cross-validation of computational models that can predict the technological application and origin of a strain from the microsatellite allelic profile. Associations between microsatellites and specific phenotypes were scored using information gain ratios, and significant findings were confirmed by permutation tests and estimation of false discovery rates. The phenotypes associated with higher number of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in the presence of potassium bisulphite) and the presence of galactosidase activity. Our study demonstrates the utility of computational modelling to estimate a strain technological group and phenotype from microsatellite allelic combinations as tools for preliminary yeast strain selection. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [21] Comparative genomics and genotype-phenotype associations in Bifidobacterium breve
    Francesca Bottacini
    Ruth Morrissey
    Maria Esteban-Torres
    Kieran James
    Justin van Breen
    Evgenia Dikareva
    Muireann Egan
    Jolanda Lambert
    Kees van Limpt
    Jan Knol
    Mary O’Connell Motherway
    Douwe van Sinderen
    Scientific Reports, 8
  • [22] The metabolic syndrome: A crossroad for genotype-phenotype associations in atherosclerosis
    Corella D.
    Ordovas J.M.
    Current Atherosclerosis Reports, 2004, 6 (3) : 186 - 196
  • [23] Integration of curated databases to identify genotype-phenotype associations
    Goh, Chern-Sing
    Gianoulis, Tara A.
    Liu, Yang
    Li, Jianrong
    Paccanaro, Alberto
    Lussier, Yves A.
    Gerstein, Mark
    BMC GENOMICS, 2006, 7 (1)
  • [24] Genotype-phenotype associations in WT1 glomerulopathy
    Lipska-Zietkiewicz, Beata S.
    Ranchin, Bruno
    Iatropoulos, Paraskevas
    Gellermann, Jutta
    Melk, Anette
    Ozaltin, Fatih
    Caridi, Gianluca
    Seeman, Tomas
    Tory, Kalman
    Jankauskiene, Augustina
    Zurowska, Aleksandra
    Szczepanska, Maria
    Wasilewska, Anna
    Harambat, Jerome
    Trautmann, Agnes
    Peco-Antic, Amira
    Borzecka, Halina
    Moczulska, Anna
    Saeed, Bassam
    Bogdanovic, Radovan
    Kalyoncu, Mukaddes
    Simkova, Eva
    Erdogan, Ozlem
    Vrljicak, Kristina
    Teixeira, Ana
    Azocar, Marta
    Schaefer, Franz
    KIDNEY INTERNATIONAL, 2014, 85 (05) : 1169 - 1178
  • [25] Genome-wide genotype-phenotype associations in microbes
    Feng, Huibao
    Yuan, Yaomeng
    Yang, Zheng
    Xing, Xin-Hui
    Zhang, Chong
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2021, 132 (01) : 1 - 8
  • [26] Comparative genomics and genotype-phenotype associations in Bifidobacterium breve
    Bottacini, Francesca
    Morrissey, Ruth
    Esteban-Torres, Maria
    James, Kieran
    van Breen, Justin
    Dikareva, Evgenia
    Egan, Muireann
    Lambert, Jolanda
    van Limpt, Kees
    Knol, Jan
    Motherway, Mary O'Connell
    van Sinderen, Douwe
    SCIENTIFIC REPORTS, 2018, 8
  • [27] GENOTYPE-PHENOTYPE ASSOCIATIONS IN VON HIPPEL-LINDAU
    Ball, Mark
    Vocke, Cathy
    Leite, Cristiane
    Peterson, James
    Merino, Maria
    Middelton, Lindsay
    Chittiboina, Prashant
    Zaghloul, Kareem
    Chew, Emily
    Malayeri, Ashkan
    Metwalli, Adam
    Zbar, Berton
    Schmidt, Laura
    Linehan, W. Marston
    JOURNAL OF UROLOGY, 2018, 199 (04): : E893 - E894
  • [28] Genotype-phenotype associations in Fanconi anemia: A literature review
    Fiesco-Roa, Moises O.
    Giri, Neelam
    McReynolds, Lisa J.
    Best, Ana F.
    Alter, Blanche P.
    BLOOD REVIEWS, 2019, 37
  • [29] Genotype-phenotype associations in CLN3 disease
    Masten, Margaux C.
    Vierhile, Amy
    Vermilion, Jennifer
    Adams, Heather R.
    Augustine, Erika F.
    Mink, Jonathan W.
    MOLECULAR GENETICS AND METABOLISM, 2021, 132 (02) : S69 - S70
  • [30] Genotype-phenotype associations in patients with severe hyperinsulinism of infancy
    Greer, Ristan M.
    Shah, Janaki
    Jeske, Yvette W.
    Brown, David
    Walker, Rosslyn M.
    Cowley, David
    Bowling, Francis G.
    Liaskou, Daphne
    Harris, Mark
    Thomsett, Michael J.
    Choong, Catherine
    Bell, John R.
    Jack, Michelle M.
    Cotterill, Andrew M.
    PEDIATRIC AND DEVELOPMENTAL PATHOLOGY, 2007, 10 (01) : 25 - 34