Boundary predictive control of parabolic PDEs

被引:3
|
作者
Dubljevic, Stevan [1 ]
Christofides, Panagiotis D. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
关键词
diffusion-reaction processes; dissipative systems; boundary control; parabolic PDEs; model predictive control; input/state constraints;
D O I
10.1109/ACC.2006.1655329
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work focuses on predictive control of linear parabolic partial differential equations (PDEs) with boundary control actuation subject to input and state constraints. Under the assumption that measurements of the PDE state are available. various finite-dimensional and infinite-dimensional predictive control formulations are presented and their ability to enforce stability and constraint satisfaction in the infinite-dimensional closed-loop system is analyzed. A numerical example of a linear parabolic PDE with unstable steady state and flux boundary control subject to state and control constraints is used to demonstrate the implementation and effectiveness of the predictive controllers.
引用
收藏
页码:49 / +
页数:2
相关论文
共 50 条
  • [21] Boundary optimal control design for a system of parabolic-hyperbolic PDEs coupled with an ODE
    Aksikas, Ahmed
    Aksikas, Ilyasse
    Hayes, Robert E.
    Fraser Forbes, J.
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (07) : 1499 - 1509
  • [22] Constructive finite-dimensional boundary control of stochastic 1D parabolic PDEs
    Wang, Pengfei
    Katz, Rami
    Fridman, Emilia
    AUTOMATICA, 2023, 148
  • [23] Exponential Consensus of Multiagent Systems Based on Nonlinear Parabolic PDEs via Intermittent Boundary Control
    Qiu, Qian
    Su, Housheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (08): : 4833 - 4842
  • [24] Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs
    Smyshlyaev, Andrey
    Krstic, Miroslav
    AUTOMATICA, 2007, 43 (09) : 1543 - 1556
  • [25] Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness
    Meurer, Thomas
    Kugi, Andreas
    AUTOMATICA, 2009, 45 (05) : 1182 - 1194
  • [26] Boundary linear-quadratic control for a system of coupled parabolic-hyperbolic PDEs and ODE
    Aksikas, Ahmed
    Aksikas, Ilyasse
    Hayes, Robert E.
    Forbes, Fraser
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 174 - 179
  • [27] Constructive finite-dimensional observer-based boundary control of stochastic parabolic PDEs
    Wang, Pengfei
    Katz, Rami
    Fridman, Emilia
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 1667 - 1672
  • [28] Tracking Control for Parabolic PDEs with Varying Parameters
    Jadachowski, Lukas
    Meurer, Thomas
    Kugi, Andreas
    AT-AUTOMATISIERUNGSTECHNIK, 2010, 58 (03) : 128 - 138
  • [29] External optimal control of fractional parabolic PDEs
    Antil, Harbir
    Verma, Deepanshu
    Warma, Mahamadi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [30] Adaptive boundary observer for parabolic PDEs subject to domain and boundary parameter uncertainties
    Ahmed-Ali, Tarek
    Giri, Fouad
    Krstic, Miroslav
    Bullion, Laurent
    Lamnabhi-Lagarrigue, Francoise
    AUTOMATICA, 2016, 72 : 115 - 122