ON THE UNIQUENESS OF GLOBAL MULTIPLE SLES

被引:15
|
作者
Beffara, Vincent [1 ,2 ]
Peltola, Eveliina [3 ]
Wu, Hao [4 ]
机构
[1] Inst Fourier, CNRS, Grenoble, France
[2] Univ Grenoble Alpes, Grenoble, France
[3] Univ Bonn, Inst Appl Math, Bonn, Germany
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
来源
ANNALS OF PROBABILITY | 2021年 / 49卷 / 01期
基金
北京市自然科学基金;
关键词
Schramm-Loewner evolution; multiple interfaces; ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; CRITICAL PERCOLATION; ISING INTERFACES; SCALING LIMITS; RANDOM-CLUSTER; RESTRICTION; PATH;
D O I
10.1214/20-AOP1477
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article focuses on the characterization of global multiple Schramm-Loewner evolutions (SLE). The chordal SLE describes the scaling limit of a single interface in various critical lattice models with Dobrushin boundary conditions, and similarly, global multiple SLEs describe scaling limits of collections of interfaces in critical lattice models with alternating boundary conditions. In this article, we give a minimal amount of characterizing properties for the global multiple SLEs: we prove that there exists a unique probability measure on collections of pairwise disjoint continuous simple curves with a certain conditional law property. As a consequence, we obtain the convergence of multiple interfaces in the critical Ising, FK-Ising and percolation models.
引用
收藏
页码:400 / 434
页数:35
相关论文
共 50 条