Design of a speed meter interferometer proof-of-principle experiment

被引:29
|
作者
Graef, C. [1 ]
Barr, B. W. [1 ]
Bell, A. S. [1 ]
Campbell, F. [1 ]
Cumming, A. V. [1 ]
Danilishin, S. L. [2 ]
Gordon, N. A. [1 ]
Hammond, G. D. [1 ]
Hennig, J. [1 ]
Houston, E. A. [1 ]
Huttner, S. H. [1 ]
Jones, R. A. [1 ]
Leavey, S. S. [1 ]
Lueck, H. [3 ,4 ]
Macarthur, J. [1 ]
Marwick, M. [1 ]
Rigby, S. [1 ]
Schilling, R. [3 ,4 ]
Sorazu, B. [1 ]
Spencer, A. [1 ]
Steinlechner, S. [1 ]
Strain, K. A. [1 ]
Hild, S. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, D-30167 Hannover, Germany
基金
欧洲研究理事会; 英国科学技术设施理事会;
关键词
Sagnac speed meter; quantum noise; laser interferometer; conceptual design; gravitational wave detector; QND; quantum non-demolition; SAGNAC INTERFEROMETER; NOISE;
D O I
10.1088/0264-9381/31/21/215009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The second generation of large scale interferometric gravitational wave (GW) detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter (SSM) interferometer, which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify SSM for further research towards an implementation in a future generation large scale GW detector, such as the planned Einstein telescope observatory.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Author Correction: Proof-of-principle experiment for laser-driven cold neutron source
    S. R. Mirfayzi
    A. Yogo
    Z. Lan
    T. Ishimoto
    A. Iwamoto
    M. Nagata
    M. Nakai
    Y. Arikawa
    Y. Abe
    D. Golovin
    Y. Honoki
    T. Mori
    K. Okamoto
    S. Shokita
    D. Neely
    S. Fujioka
    K. Mima
    H. Nishimura
    S. Kar
    R. Kodama
    Scientific Reports, 11
  • [32] A proof-of-principle experiment of EIT with gamma radiation in FePSe3 single crystal
    Muramatsu, Hisakazu
    Nakajo, S.
    Nakagami, K.
    Nagata, K.
    Mochizuki, S.
    Suzuki, H.
    HYPERFINE INTERACTIONS, 2012, 207 (1-3): : 7 - 12
  • [33] Proof-of-principle experiment on control of ion flow and ion heating during magnetic reconnection
    Murata, Y
    Ono, Y
    ELECTRICAL ENGINEERING IN JAPAN, 2004, 148 (03) : 1 - 6
  • [34] Proof-of-Principle Experiment of Velocity Bunching for Ultra-short Electron Pulse Production
    Kashiwagi, S.
    Nagasawa, S.
    Hinode, F.
    Muto, T.
    Saito, H.
    Abe, T.
    Nanbu, K.
    Nagasawa, I.
    Takahashi, K.
    Tokoku, C.
    Kobayashi, E.
    Hama, H.
    COE ON SUSTAINABLE ENERGY SYSTEM (THAI-JAPAN), 2016, 89 : 346 - 352
  • [35] A proof-of-principle experiment of EIT with gamma radiation in FePSe3 single crystal
    Hisakazu Muramatsu
    S. Nakajo
    K. Nakagami
    K. Nagata
    S. Mochizuki
    H. Suzuki
    Hyperfine Interactions, 2012, 207 : 7 - 12
  • [36] A proof-of-principle experiment of optical injection of electrons in laser-driven plasma waves
    Saleh, N
    Zhang, P
    Chen, S
    Sheng, ZM
    Maksimchuk, A
    Yanovsky, V
    Umstadter, D
    ADVANCED ACCELERATOR CONCEPTS, 2002, 647 : 690 - 700
  • [37] A switchable radioactive neutron source: Proof-of-principle
    D. L. Bowers
    E. A. Rhodes
    C. E. Dickerman
    Journal of Radioanalytical and Nuclear Chemistry, 1998, 233 : 161 - 165
  • [38] Decision analysis to evaluate proof-of-principle trial design for a new drug candidate
    Viswanathan, V
    Bayney, R
    INTERFACES, 2004, 34 (03) : 206 - 207
  • [39] Proof-of-principle of molecular-scale arithmetic
    de, Silva, A. Prasanna
    McClenaghan, Nathan D.
    1600, ACS, Washington, DC, USA (122):
  • [40] Proof-of-principle for proteomic diagnosis in breast cancer
    Sansom, C
    LANCET ONCOLOGY, 2003, 4 (08): : 457 - 457