Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids

被引:31
|
作者
Ern, Alexandre [1 ]
Vohralik, Martin [2 ]
机构
[1] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
ELLIPTIC PROBLEMS;
D O I
10.1016/j.crma.2009.01.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discontinuous Galerkin methods handle very well general polygonal and nonmatching meshes. We present in this Note a H(div)conforming reconstruction of the flux on such meshes in the setting of an elliptic problem. We exploit the local conservation property of discontinuous Galerkin methods and solve local Neumann problems by means of the Raviart-Thomas-Nedelec mixed finite element method. Our reconstruction can be used in a guaranteed a posteriori error estimate and it is also of independent interest when the approximate flux is to be used subsequently in a transport problem. To cite this article: A. Ern, M. Vohralik, C. R. Acad. Sci. Paris, Ser. I347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [41] A posteriori error estimation for a fully discrete discontinuous Galerkin approximation to a kind of singularly perturbed problems
    Chen, Yanping
    Yang, Jiming
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (10) : 757 - 770
  • [42] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Chung, Eric T.
    Park, Eun-Jae
    Zhao, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 1079 - 1101
  • [43] A posteriori error estimates for discontinuous Galerkin method to the elasticity problem
    Thi Hong Cam Luong
    Daveau, Christian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1348 - 1369
  • [44] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [45] A unifying theory of a posteriori error control for discontinuous Galerkin FEM
    Carstensen, Carsten
    Gudi, Thirupathi
    Jensen, Max
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 363 - 379
  • [46] A unifying theory of a posteriori error control for discontinuous Galerkin FEM
    Carsten Carstensen
    Thirupathi Gudi
    Max Jensen
    Numerische Mathematik, 2009, 112 : 363 - 379
  • [47] A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems
    Sun, SY
    Wheeler, MF
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (7-8) : 632 - 652
  • [48] GOAL ORIENTED A POSTERIORI ERROR ESTIMATES FOR THE DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 15 - 23
  • [49] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [50] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Eric T. Chung
    Eun-Jae Park
    Lina Zhao
    Journal of Scientific Computing, 2018, 75 : 1079 - 1101