The Hopf property for subgroups of hyperbolic groups

被引:2
|
作者
Bumagina, I [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
关键词
hyperbolic groups; group action on real trees; decompositions of groups; endomorphisms of groups;
D O I
10.1023/B:GEOM.0000033859.35966.4a
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is said to be Hopfian if every surjective endomorphism of the group is injective. We show that finitely generated subgroups of torsion-free hyperbolic groups are Hopfian. Our proof generalizes a theorem of Sela (Topology 35 (2) 1999, 301 - 321).
引用
收藏
页码:211 / 230
页数:20
相关论文
共 50 条
  • [21] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Isenrich, Claudio Llosa
    Py, Pierre
    INVENTIONES MATHEMATICAE, 2023, 235 (1) : 233 - 254
  • [22] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Claudio Llosa Isenrich
    Pierre Py
    Inventiones mathematicae, 2024, 235 : 233 - 254
  • [23] Independence property and hyperbolic groups
    Jaligot, Eric
    Muranov, Alexey
    Neman, Azadeh
    BULLETIN OF SYMBOLIC LOGIC, 2008, 14 (01) : 88 - 98
  • [24] Recognition of subgroups of direct products of hyperbolic groups
    Bridson, MR
    Miller, CF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 59 - 65
  • [25] FIXED SUBGROUPS OF AUTOMORPHISMS OF RELATIVELY HYPERBOLIC GROUPS
    Minasyan, Ashot
    Osin, Denis
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 695 - 712
  • [26] Combination of quasiconvex subgroups of relatively hyperbolic groups
    Martinez-Pedroza, Eduardo
    GROUPS GEOMETRY AND DYNAMICS, 2009, 3 (02) : 317 - 342
  • [27] Frattini subgroups of hyperbolic-like groups
    Goffer, G.
    Osin, D.
    Rybak, E.
    JOURNAL OF ALGEBRA, 2024, 658 : 22 - 37
  • [28] Hyperbolic groups with almost finitely presented subgroups
    Kropholler, Peter H.
    Vigolo, Federico
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (01) : 153 - 178
  • [29] On index 2 subgroups of hyperbolic symmetry groups
    De Las Penas, Ma. Louise Antonette N.
    Felix, Rene P.
    Provido, Eden Delight B.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2007, 222 (09): : 443 - 448
  • [30] Codimension one subgroups and boundaries of hyperbolic groups
    Delzant, Thomas
    Papasoglu, Panos
    GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (03) : 533 - 548