An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images

被引:91
|
作者
Neto, Luiz Camara [1 ]
Ramalho, Geraldo L. B. [2 ]
Rocha Neto, Jeova F. S. [1 ]
Veras, Rodrigo M. S. [3 ]
Medeiros, Fatima N. S. [1 ]
机构
[1] Univ Fed Ceara, Dept Engn Teleinformat, Campus Pici S-N,Bloco 725, BR-60455970 Fortaleza, CE, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Ceara, Av 13 Maio 2081, BR-60040215 Fortaleza, CE, Brazil
[3] Univ Fed Piaui, Dept Comp, Campus Univ Minist Petronio Portella, BR-64049550 Teresina, PI, Brazil
关键词
Retinal vasculature; Local coarse segmentation; Balanced accuracy; Vessel refinement; RETINAL IMAGES; CLASSIFICATION; RECONSTRUCTION; EFFICIENT; FEATURES;
D O I
10.1016/j.eswa.2017.02.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Algorithms for retinal vessel segmentation are powerful tools in automatic tracking systems for early detection of ophthalmological and cardiovascular diseases, and for biometric identification. In order to create more robust and reliable systems, the algorithms need to be accurately evaluated to certify their ability to emulate specific human expertise. The main contribution of this paper is an unsupervised method to detect blood vessels in fundus images using a coarse-to-fine approach. Our methodology combines Gaussian smoothing, a morphological top-hat operator, and vessel contrast enhancement for background homogenization and noise reduction. Here, statistics of spatial dependency and probability are used to coarsely approximate the vessel map with an adaptive local thresholding scheme. The coarse segmentation is then refined through curvature analysis and morphological reconstruction to reduce pixel mislabeling and better estimate the retinal vessel tree. The method was evaluated in terms of its sensitivity, specificity and balanced accuracy. Extensive experiments have been conducted on DRIVE and STARE public retinal images databases. Comparisons with state-of-the-art methods revealed that our method outperformed most recent methods in terms of sensitivity and balanced accuracy with an average of 0.7819 and 0.8702, respectively. Also, the proposed method outperformed state-of-the-art methods when evaluating only pathological images that is a more challenging task. The method achieved for this set of images an average of 0.7842 and 0.8662 for sensitivity and balanced accuracy, respectively. Visual inspection also revealed that the proposed approach effectively addressed main image distortions by reducing mislabeling of central vessel reflex regions and false-positive detection of pathological patterns. These improvements indicate the ability of the method to accurately approximate the vessel tree with reduced visual interference of pathological patterns and vessel-like structures. Therefore, our method has the potential for supporting expert systems in screening, diagnosis and treatment of ophthalmological diseases, and furthermore for personal recognition based on retinal profile matching. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:182 / 192
页数:11
相关论文
共 50 条
  • [31] Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) : 1118 - 1128
  • [32] A Coarse-to-Fine Target Segmentation Algorithm of Aerial Insulator Images with Local Feature Matching and Active Contour Model
    Liao, Shenglong
    An, Jubai
    Mo, Hanxiang
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 491 - 496
  • [33] Coarse-to-Fine Amodal Segmentation with Shape Prior
    Gao, Jianxiong
    Qian, Xuelin
    Wang, Yikai
    Xiao, Tianjun
    He, Tong
    Zhang, Zheng
    Fu, Yanwei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1262 - 1271
  • [34] Unsupervised Segmentation of Blood Vessels from Colour Retinal Fundus Images
    Yin, Xiao-Xia
    Ng, Brian W. -H.
    He, Jing
    Zhang, Yanchun
    Abbott, Derek
    HEALTH INFORMATION SCIENCE, HIS 2014, 2014, 8423 : 194 - 203
  • [35] Robust Vessel Segmentation in Fundus Images
    Budai, A.
    Bock, R.
    Maier, A.
    Hornegger, J.
    Michelson, G.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
  • [36] Iterative Vessel Segmentation of Fundus Images
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) : 1738 - 1749
  • [37] An Efficiency Coarse-to-Fine Segmentation Framework for Abdominal Organs Segmentation
    Chen, Cancan
    Xu, Weixin
    Zhang, Rongguo
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 47 - 55
  • [38] SPECTRALLY COARSE-TO-FINE PANSHARPENING FOR HYPERSPECTRAL IMAGES
    Lai, Honghao
    He, Lin
    Xi, Dahan
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [39] Coarse-to-Fine Stacked Fully Convolutional Nets for Lymph Node Segmentation in Ultrasound Images
    Zhang, Yizhe
    Ying, Michael T. C.
    Yang, Lin
    Ahuja, Anil T.
    Chen, Danny Z.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 443 - 448
  • [40] Advanced Deep Learning for Blood Vessel Segmentation in Retinal Fundus Images
    Ngo, Lua
    Han, Jae-Ho
    2017 5TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2017, : 91 - 92