High-performance hybrid electrochemical capacitor with binder- free Nb2O5@ graphene

被引:73
|
作者
Wang, Luyuan Paul [1 ,2 ]
Yu, Linghui [1 ]
Satish, Rohit [1 ]
Zhu, Jixin [1 ]
Yan, Qingyu [1 ]
Srinivasan, Madhavi [1 ,2 ]
Xu, Zhichuan [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, ERI N, Energy Res Inst NTU, Singapore 639798, Singapore
来源
RSC ADVANCES | 2014年 / 4卷 / 70期
基金
新加坡国家研究基金会;
关键词
LI STORAGE; ENERGY-STORAGE; ION BATTERIES; SUPERCAPACITOR; ELECTRODES; OXIDE; CHALLENGES; HOST;
D O I
10.1039/c4ra06674j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybrid electrochemical capacitors (HECs) are capable of storing more energy than supercapacitors while providing more power compared to lithium-ion batteries (LIBs). The development of Li-intercalating materials is critical to organic electrolyte based HECs, which generally give larger potential output than aqueous electrolyte based HECs. This article reports on a simple binder-free Nb2O5@graphene composite that exhibited excellent HEC performance as compared with other Li intercalating electrode materials. The composite exhibited enhanced cyclability with a capacity retention of 91.2% compared to 74.4% of the pure Nb2O5 half-cell when tested at a rate of 2000 mA g(-1) (10 C). The composite displayed a lower polarization effect when cycled at increasing scan rates (1-10 mV s(-1)). The enhanced rate capability could be ascribed to the use of a highly conductive graphene support. As a result, the HEC composed of the Nb2O5@graphene composite and activated carbon (AC) delivered a maximum energy and power density of 29 W h kg(-1) and 2.9 kW kg(-1). The performance is better than most reported HECs with other Li-intercalating electrode materials.
引用
收藏
页码:37389 / 37394
页数:6
相关论文
共 50 条
  • [31] Nb2O5/graphene nanocomposites for electrochemical energy storage
    Arunkumar, Paulraj
    Ashish, Ajithan G.
    Babu, Binson
    Sarang, Som
    Suresh, Abhin
    Sharma, Chithra H.
    Thalakulam, Madhu
    Shaijumon, Manikoth M.
    RSC ADVANCES, 2015, 5 (74): : 59997 - 60004
  • [32] Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors
    Hun Park
    Tae Hee Han
    Macromolecular Research, 2014, 22 : 809 - 812
  • [33] Surfactant-Free Synthesis of Nb2O5 Nanoparticles Anchored Graphene Nanocomposites with Enhanced Electrochemical Performance for Supercapacitor Electrodes
    Nagaraju, P.
    Vasudevan, R.
    Alsalme, A.
    Alghamdi, A.
    Arivanandhan, M.
    Jayavel, R.
    NANOMATERIALS, 2020, 10 (01)
  • [34] Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors
    Park, Hun
    Han, Tae Hee
    MACROMOLECULAR RESEARCH, 2014, 22 (08) : 809 - 812
  • [35] Functional binder for high-performance Li-O2 batteries
    Cui, Yanming
    Wen, Zhaoyin
    Lu, Yan
    Wu, Meifen
    Liang, Xiao
    Jin, Jun
    JOURNAL OF POWER SOURCES, 2013, 244 : 614 - 619
  • [36] Porous reduced graphene oxide paper as a binder-free electrode for high-performance supercapacitors
    Liu, Yu
    Ying, Yulong
    Mao, Yiyin
    Hua, Pan
    Peng, Xinsheng
    RSC ADVANCES, 2015, 5 (34) : 27175 - 27180
  • [37] Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage
    Ji, Junyi
    Li, Yang
    Peng, Wenchao
    Zhang, Guoliang
    Zhang, Fengbao
    Fan, Xiaobin
    ADVANCED MATERIALS, 2015, 27 (36) : 5264 - 5279
  • [38] Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes
    Sun, Cheng-Yue
    Zhu, Yun-Guang
    Zhu, Tie-Jun
    Xie, Jian
    Cao, Gao-Shao
    Zhao, Xin-Bing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (04) : 1159 - 1165
  • [39] Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes
    Cheng-Yue Sun
    Yun-Guang Zhu
    Tie-Jun Zhu
    Jian Xie
    Gao-Shao Cao
    Xin-Bing Zhao
    Journal of Solid State Electrochemistry, 2013, 17 : 1159 - 1165
  • [40] Nb2O5 Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density
    She, Liaona
    Iran, Zhe
    Kang, Liping
    He, Xuexia
    Lei, Zhibin
    Shi, Feng
    Xu, Hua
    Sun, Jie
    Liu, Zong-Huai
    ACS OMEGA, 2018, 3 (11): : 15943 - 15951