Bayesian Analysis of Realized Matrix-Exponential GARCH Models

被引:5
|
作者
Asai, Manabu [1 ]
McAleer, Michael [2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Soka Univ, Fac Econ, Hachioji, Tokyo, Japan
[2] Asia Univ, Dept Finance, Taichung, Taiwan
[3] Univ Sydney, Discipline Business Analyt, Business Sch, Sydney, NSW, Australia
[4] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, Rotterdam, Netherlands
[5] Univ Complutense Madrid, Dept Econ Anal, Madrid, Spain
[6] Univ Complutense Madrid, ICAE, Madrid, Spain
[7] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa, Japan
基金
日本学术振兴会; 澳大利亚研究理事会;
关键词
Multivariate GARCH; Realized measure; Matrix-exponential; Bayesian Markov chain Monte Carlo method; Asymmetry; CONDITIONAL HETEROSKEDASTICITY; MULTIVARIATE; INFERENCE; VOLATILITY; IMPACT; ARCH;
D O I
10.1007/s10614-020-10074-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses the information of returns and realized measure of co-volatility matrix simultaneously. An alternative multivariate asymmetric function to develop news impact curves is also considered. We consider Bayesian Markov chain Monte Carlo estimation to allow non-normal posterior distributions and illustrate the usefulness of the algorithm with numerical simulations for two assets. We compare the realized MEGARCH models with existing multivariate GARCH class models for three US financial assets. The empirical results indicate that the realized MEGARCH models outperform the other models regarding out-of-sample performance. The news impact curves based on the posterior densities provide reasonable results.
引用
收藏
页码:103 / 123
页数:21
相关论文
共 50 条
  • [31] Bayesian analysis of periodic asymmetric power GARCH models
    Aknouche, Abdelhakim
    Demmouche, Nacer
    Dimitrakopoulos, Stefanos
    Touche, Nassim
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2020, 24 (04):
  • [32] Multivariate matrix-exponential affine mixtures and their applications in risk theory
    Cheung, Eric C. K.
    Peralta, Oscar
    Woo, Jae-Kyung
    INSURANCE MATHEMATICS & ECONOMICS, 2022, 106 : 364 - 389
  • [33] Matrix-exponential groups and Kolmogorov-Fokker-Planck equations
    Bonfiglioli, Andrea
    Lanconelli, Ermanno
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (01) : 59 - 82
  • [34] A NOTE ON R-BALAYAGES OF MATRIX-EXPONENTIAL LEVY PROCESSES
    Chen, Yu-Ting
    Sheu, Yuan-Chung
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 165 - 175
  • [35] Bayesian quantile forecasting via the realized hysteretic GARCH model
    Chen, Cathy W. S.
    Lin, Edward M. H.
    Huang, Tara F. J.
    JOURNAL OF FORECASTING, 2022, 41 (07) : 1317 - 1337
  • [36] Bayesian tail-risk forecasting using realized GARCH
    Contino, Christian
    Gerlach, Richard H.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (02) : 213 - 236
  • [37] A semi-infinite programming approach to identifying matrix-exponential distributions
    Fackrell, Mark
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (09) : 1623 - 1631
  • [38] On the Resolvent of the L,vy Process with Matrix-Exponential Distribution of Jumps
    Karnaukh, E. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 68 (12) : 1884 - 1899
  • [39] Enhanced optimization of high order concentrated matrix-exponential distributions
    Almousa, Salah Al-Deen
    Telek, Miklos
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 5 - 19
  • [40] GARCH models without positivity constraints: Exponential or log GARCH?
    Francq, Christian
    Wintenberger, Olivier
    Zakoiean, Jean-Michel
    JOURNAL OF ECONOMETRICS, 2013, 177 (01) : 34 - 46