Dealloying of Noble-Metal Alloy Nanoparticles

被引:156
|
作者
Li, Xiaoqian [1 ]
Chen, Qing [1 ]
McCue, Ian [2 ]
Snyder, Joshua [3 ]
Crozier, Peter [1 ]
Erlebacher, Jonah [2 ]
Sieradzki, Karl [1 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Engn, Tempe, AZ 85287 USA
[2] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[3] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Nanoparticle; dealloying; nanoporous; noble metal; core-shell; scanning transmission electron microcopy; OXYGEN REDUCTION REACTION; SILVER NANOPARTICLES; DIFFUSION; MORPHOLOGY; EVOLUTION; SURFACE;
D O I
10.1021/nl500377g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dealloying is currently used to tailor the morphology and composition of nanoparticles and bulk solids for a variety of applications including catalysis, energy storage, sensing, actuation, supercapacitors, and radiation damage resistant materials. The known morphologies, which evolve on dealloying of nanoparticles, include core shell, hollow core-shell, and porous nanoparticles. Here we present results examining the fixed voltage dealloying of AgAu alloy particles in the size range of 2-6 and 20-55 nm. High-angle annular dark-field scanning transmission electron microcopy, energy dispersive, and electron energy loss spectroscopy are used to characterize the size, morphology, and composition of the dealloyed nanoparticles. Our results demonstrate that above the potential corresponding to Ag+/Ag equilibrium only core-shell structures evolve in the 2-6 nm diameter particles. Dealloying of the 20-55 nm particles results and in the formation of porous structures analogous to the behavior observed for the corresponding bulk alloy. A statistical analysis that includes the composition and particle size distributions characterizing the larger particles demonstrates that the formation of porous nanoparticles occurs at a well-defined thermodynamic critical potential.
引用
收藏
页码:2569 / 2577
页数:9
相关论文
共 50 条
  • [1] A STUDY OF THE DEALLOYING RESISTANCE OF NOBLE-METAL DENTAL ALLOYS
    HILLER, K
    KAISER, H
    KAESCHE, H
    BRAMER, W
    SPERNER, F
    [J]. WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1982, 33 (02): : 83 - 88
  • [2] Octahedral Noble-Metal Nanoparticles and Their Electrocatalytic Properties
    Wang, Chenyu
    Fang, Jiye
    [J]. CHEMSUSCHEM, 2013, 6 (10) : 1848 - 1857
  • [3] Microscopic model for SERS in noble-metal nanoparticles
    Pustovit, VN
    Shahbazyan, TV
    [J]. PLASMONICS IN BIOLOGY AND MEDICINE II, 2005, 5703 : 1 - 8
  • [4] Linear and nonlinear electrodynamics of noble-metal nanoparticles.
    Schatz, GC
    Jensen, T
    Kelly, L
    Lazarides, A
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U519 - U519
  • [5] Identification of the Scaling Relations for Binary Noble-Metal Nanoparticles
    Fu, Qiang
    Cao, Xinrui
    Luo, Yi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (06): : 2849 - 2854
  • [6] Fungal templates for noble-metal nanoparticles and their application in catalysis
    Bigall, Nadja C.
    Reitzig, Manuela
    Naumann, Wolfgang
    Simon, Paul
    van Pee, Karl-Heinz
    Eychmueller, Alexander
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (41) : 7876 - 7879
  • [7] BLOCK-COPOLYMER COMPOSITES WITH NOBLE-METAL NANOPARTICLES
    ROESCHER, A
    MOLLER, M
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 166 - PMSE
  • [8] Noble-metal nanoparticles directly conjugated to globular proteins
    Burt, JL
    Gutiérrez-Wing, C
    Miki-Yoshida, M
    José-Yacamán, M
    [J]. LANGMUIR, 2004, 20 (26) : 11778 - 11783
  • [9] NOBLE-METAL FLUORIDES
    ZEMSKOV, SV
    SHCIPACHEV, VA
    MITKIN, VN
    [J]. JOURNAL OF FLUORINE CHEMISTRY, 1987, 35 (01) : 102 - 102
  • [10] Noble-metal nanotubes
    不详
    [J]. CHEMICAL & ENGINEERING NEWS, 2004, 82 (01) : 21 - 21