Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors

被引:68
|
作者
Regimbau, T. [1 ]
Hughes, Scott A. [2 ,3 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR ARTEMIS, Observ Cote Azur, F-06304 Nice, France
[2] MIT Kavli Inst, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
关键词
GAMMA-RAY BURSTS; STAR-FORMATION HISTORY; BLACK-HOLE BINARIES; NEUTRON-STARS; POPULATION SYNTHESIS; WHITE-DWARFS; RADIATION; EVOLUTION; SYSTEMS; MERGERS;
D O I
10.1103/PhysRevD.79.062002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Increasing the sensitivity of a gravitational-wave (GW) detector improves our ability to measure the characteristics of detected sources. It also increases the number of weak signals that contribute to the data. Because GW detectors have nearly all-sky sensitivity, they can be subject to a confusion limit: Many sources which cannot be distinguished may be measured simultaneously, defining a stochastic noise floor to the sensitivity. For GW detectors operating at present and for their planned upgrades, the projected event rate is sufficiently low that we are far from the confusion-limited regime. However, some detectors currently under discussion may have large enough reach to binary inspiral that they enter the confusion-limited regime. In this paper, we examine the binary inspiral confusion limit for terrestrial detectors. We consider a broad range of inspiral rates in the literature, several planned advanced gravitational-wave detectors, and the highly advanced "Einstein telescope" design. Though most advanced detectors will not be impacted by this limit, the Einstein telescope with a very low-frequency "seismic wall" may be subject to confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Tracking the precession of compact binaries from their gravitational-wave signal
    Schmidt, Patricia
    Hannam, Mark
    Husa, Sascha
    Ajith, P.
    PHYSICAL REVIEW D, 2011, 84 (02):
  • [12] GRAVITATIONAL-WAVE BACKGROUND IN MULTIDIMENSIONAL COSMOLOGICAL MODELS
    DEMIANSKI, M
    POLNAREV, AG
    NASELSKY, P
    PHYSICAL REVIEW D, 1993, 47 (12) : 5275 - 5279
  • [13] Confusion background from compact binaries
    Regimbau, T.
    Hughes, Scott A.
    8TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES, 2010, 228
  • [14] Probing Multiple Populations of Compact Binaries with Third-generation Gravitational-wave Detectors
    Ng, Ken K. Y.
    Vitale, Salvatore
    Farr, Will M.
    Rodriguez, Carl L.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 913 (01)
  • [15] Anisotropies in the astrophysical gravitational-wave background: Predictions for the detection of compact binaries by LIGO and Virgo
    Jenkins, Alexander C.
    Sakellariadou, Mairi
    Regimbau, Tania
    Slezak, Eric
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [16] Gravitational-wave template banks for novel compact binaries
    Schmidt, Stefano
    Gadre, Bhooshan
    Caudill, Sarah
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [17] Gravitational-wave Signatures from Compact Object Binaries in the Galactic Center
    Wang, Huiyi
    Stephan, Alexander P.
    Naoz, Smadar
    Hoang, Bao-Minh
    Breivik, Katelyn
    ASTROPHYSICAL JOURNAL, 2021, 917 (02):
  • [18] Low-frequency terrestrial gravitational-wave detectors
    Harms, Jan
    Slagmolen, Bram J. J.
    Adhikari, Rana X.
    Miller, M. Coleman
    Evans, Matthew
    Chen, Yanbei
    Mueller, Holger
    Ando, Masaki
    PHYSICAL REVIEW D, 2013, 88 (12):
  • [19] Estimate of the gravitational-wave background from the observed cosmological distribution of quasars
    Sanchis-Gual, Nicolas
    Quilis, Vicent
    Font, Jose A.
    PHYSICAL REVIEW D, 2021, 104 (02)
  • [20] A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors
    Bose, Sukanta
    Dayanga, Thilina
    Ghosh, Shaon
    Talukder, Dipongkar
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (13)