Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors

被引:68
|
作者
Regimbau, T. [1 ]
Hughes, Scott A. [2 ,3 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR ARTEMIS, Observ Cote Azur, F-06304 Nice, France
[2] MIT Kavli Inst, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
关键词
GAMMA-RAY BURSTS; STAR-FORMATION HISTORY; BLACK-HOLE BINARIES; NEUTRON-STARS; POPULATION SYNTHESIS; WHITE-DWARFS; RADIATION; EVOLUTION; SYSTEMS; MERGERS;
D O I
10.1103/PhysRevD.79.062002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Increasing the sensitivity of a gravitational-wave (GW) detector improves our ability to measure the characteristics of detected sources. It also increases the number of weak signals that contribute to the data. Because GW detectors have nearly all-sky sensitivity, they can be subject to a confusion limit: Many sources which cannot be distinguished may be measured simultaneously, defining a stochastic noise floor to the sensitivity. For GW detectors operating at present and for their planned upgrades, the projected event rate is sufficiently low that we are far from the confusion-limited regime. However, some detectors currently under discussion may have large enough reach to binary inspiral that they enter the confusion-limited regime. In this paper, we examine the binary inspiral confusion limit for terrestrial detectors. We consider a broad range of inspiral rates in the literature, several planned advanced gravitational-wave detectors, and the highly advanced "Einstein telescope" design. Though most advanced detectors will not be impacted by this limit, the Einstein telescope with a very low-frequency "seismic wall" may be subject to confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The gravitational wave background from cosmological compact binaries
    Farmer, AJ
    Phinney, ES
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 346 (04) : 1197 - 1214
  • [2] The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors
    Regimbau, Tania
    SYMMETRY-BASEL, 2022, 14 (02):
  • [3] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [4] Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors
    Zhong, Haowen
    Ormiston, Rich
    Mandic, Vuk
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [5] Impacts of gravitational-wave background from supermassive black hole binaries on the detection of compact binaries by LISA
    Huang, Fan
    Bi, Yan-Chen
    Cao, Zhoujian
    Huang, Qing-Guo
    CHINESE PHYSICS C, 2024, 48 (06)
  • [6] Impacts of gravitational-wave background from supermassive black hole binaries on the detection of compact binaries by LISA
    黄帆
    毕研晨
    曹周键
    黄庆国
    Chinese Physics C, 2024, 48 (06) : 202 - 207
  • [7] GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES
    Nissanke, Samaya
    Vallisneri, Michele
    Nelemans, Gijs
    Prince, Thomas A.
    ASTROPHYSICAL JOURNAL, 2012, 758 (02):
  • [8] Impacts of gravitational-wave background from supermassive black hole binaries on the detection of compact binaries by LISA
    黄帆
    毕研晨
    曹周键
    黄庆国
    Chinese Physics C, 2024, (06) : 202 - 207
  • [9] The future of gravitational-wave detectors
    Rapagnani, P.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2008, 123 (6-7): : 1003 - 1005
  • [10] Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors
    Martinovic, Katarina
    Meyers, Patrick M.
    Sakellariadou, Mairi
    Christensen, Nelson
    PHYSICAL REVIEW D, 2021, 103 (04)