Seismic Event Discrimination Using Deep CCA

被引:4
|
作者
Lindenbaum, Ofir [1 ]
Rabin, Neta [2 ]
Bregman, Yuri [3 ]
Averbuch, Amir [4 ]
机构
[1] Yale Univ, Program Appl Math, New Haven, CT 06520 USA
[2] Tel Aviv Univ, Dept Ind Engn, IL-69978 Tel Aviv, Israel
[3] Soreq Nucl Res Ctr, IL-81800 Yavne, Israel
[4] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
关键词
Sonogram; Correlation; Microsoft Windows; Noise measurement; Signal to noise ratio; Task analysis; Seismology; Classification; data augmentation; deep canonical correlation analysis (DCCA); seismic discrimination; WAVE-FORM CORRELATION; AUTOMATIC DISCRIMINATION; NETWORK;
D O I
10.1109/LGRS.2019.2959554
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Detection and discrimination of seismic events have important implications. Precise detection of earthquakes may help prevent collateral damage and even save lives. On the other hand, the ability to identify explosions reliably not only helps prevent false alarms but also is crucial for monitoring nuclear experiments. In this work, we present a method for automatic discrimination of seismic events. A neural network is trained to fuse information from multiple seismic channels into a correlated space. Then, we augment the minority class to avoid class imbalance. Finally, a tree-based classifier is used to estimate the nature of the suspected event. We apply the proposed approach to 1609 events collected in Israel and Jordan. Our framework demonstrates improved precision and recall scores.
引用
收藏
页码:1856 / 1860
页数:5
相关论文
共 50 条
  • [31] An active background discrimination technique using a multiple detector event by event recording system
    Wordel, R
    Mouchel, D
    Steinbauer, E
    Oyrer, R
    [J]. APPLIED RADIATION AND ISOTOPES, 1996, 47 (9-10) : 1061 - 1067
  • [32] Combined Rayleigh- and Love-Wave Magnitudes for Seismic Event Discrimination and Screening Analysis
    MacCarthy, Jonathan K.
    Anderson, Dale N.
    Bonner, Jessie L.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2013, 103 (06) : 3334 - 3340
  • [33] Q AND SEISMIC DISCRIMINATION
    SOLOMON, SC
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1972, 31 (1-3): : 163 - 177
  • [34] REGIONAL SEISMIC DISCRIMINATION
    BATH, M
    [J]. TECTONOPHYSICS, 1980, 61 (04) : T7 - T14
  • [35] Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning
    Huang, Linqi
    Li, Jun
    Hao, Hong
    Li, Xibing
    [J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 81 : 265 - 276
  • [36] Seismic events discrimination using a new FLVQ clustering model
    Nassery, P
    Faez, K
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (07) : 1533 - 1539
  • [37] DISCRIMINATION OF BIPEDS FROM QUADRUPEDS USING SEISMIC FOOTSTEP SIGNATURES
    Mehmood, Asif
    Patel, Vishal M.
    Damarla, Thyagaraju
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6920 - 6923
  • [38] Explosion Discrimination Using Seismic Gradiometry and Spectral Filtering of Data
    Challu, Cristian
    Poppeliers, Christian
    Punosevac, Predrag
    Dubrawski, Artur
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2021, 111 (03) : 1365 - 1377
  • [39] Seismic Traveltime Tomography Using Deep Learning
    Jo, Jun Hyeon
    Ha, Wansoo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] Seismic Data Compression Using Deep Learning
    Helal, Emad B.
    Saad, Omar M.
    Hafez, Ali G.
    Chen, Yangkang
    Dousoky, Gamal M.
    [J]. IEEE ACCESS, 2021, 9 : 58161 - 58169