Vortices in rotating trapped dilute Bose-Einstein condensates

被引:10
|
作者
Fetter, AL [1 ]
机构
[1] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA
来源
关键词
Bose-Einstein condensation; Bose gas; Gross-Pitaevskii equation; rotating traps;
D O I
10.1016/j.physc.2003.09.104
中图分类号
O59 [应用物理学];
学科分类号
摘要
The basic physics of a dilute trapped Bose gas reflects both the interparticle interactions and the quantum degeneracy. At low temperatures, nearly all the particles are in the condensate. The corresponding macroscopic wave function obeys the time-dependent Gross-Pitaevskii equation that describes the dynamical evolution (formally equivalent to a nonlinear Schrodinger equation). The dynamics of a single vortex in a rotating condensate can be studied in various different ways. (i) One method examines how the energy changes as the vortex is displaced from the central position and predicts the onset of metastability at a critical angular velocity Omega(m). (ii) A more direct dynamical approach considers the small-amplitude perturbations and finds a negative frequency if the applied angular velocity Omega is smaller than Omega(m) for onset of metastability (this behavior indicates a Landau type of instability for Omega < Omega(m)). Both analyses predict the precession frequency of an off-center vortex line, in good agreement with measured values. For larger external rotation rates, the number of vortices increases and a triangular vortex lattice forms. In the limit of rapid rotations, the centrifugal forces expand the condensate radially and shrink it axially. This altered aspect ratio provides a reliable estimate of the actual rotation rate. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 50 条
  • [21] Quantum phases of vortices in rotating Bose-Einstein condensates
    Cooper, NR
    Wilkin, NK
    Gunn, JMF
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (12) : 120405/1 - 120405/4
  • [22] Precession of vortices in dilute Bose-Einstein condensates at finite temperature
    Wild, B. G.
    Hutchinson, D. A. W.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [23] Splitting of doubly quantized vortices in dilute Bose-Einstein condensates
    Gawryluk, K.
    Karpiuk, T.
    Brewczyk, M.
    Rzazewski, K.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [24] Splitting dynamics of giant vortices in dilute Bose-Einstein condensates
    Kuopanportti, Pekko
    Moettoenen, Mikko
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [25] Adiabaticity criterion for moving vortices in dilute Bose-Einstein condensates
    Virtanen, SM
    Simula, TP
    Salomaa, MM
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (23) : 230403 - 1
  • [26] Stabilization and Pumping of Giant Vortices in Dilute Bose-Einstein Condensates
    Kuopanportti, Pekko
    Mottonen, Mikko
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 161 (5-6) : 561 - 573
  • [27] The physics of trapped dilute-gas Bose-Einstein condensates
    Parkins, AS
    Walls, DF
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (01): : 2 - 80
  • [28] Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates
    Tsatsos, M. C.
    Edmonds, M. J.
    Parker, N. G.
    [J]. PHYSICAL REVIEW A, 2016, 94 (02)
  • [29] The Nonexistence of Vortices for Rotating Bose-Einstein Condensates with Attractive Interactions
    Guo, Yujin
    Luo, Yong
    Yang, Wen
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (03) : 1231 - 1281
  • [30] Manipulating vortices with a rotating laser beam in Bose-Einstein condensates
    Di, Xuefeng
    Nie, Yu-Hang
    Yang, Tao
    [J]. LASER PHYSICS, 2023, 33 (08)