Mizoguchi-Takahashi's Fixed Point Theorem with α, η Functions

被引:22
|
作者
Ali, Muhammad Usman [1 ]
Kamran, Tayyab [2 ]
Sintunavarat, Wutiphol [3 ]
Katchang, Phayap [4 ]
机构
[1] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Islamabad, Pakistan
[2] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[3] Thammasat Univ, Fac Sci & Technol, Rangsit Ctr, Dept Math & Stat, Pathum Thani 12121, Thailand
[4] Rajamangala Univ Technol Lanna Tak, Fac Sci & Agr Technol, Div Math, Tak 63000, Thailand
关键词
D O I
10.1155/2013/418798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of generalized alpha(*)-admissible mappings. By using this notion, we prove a fixed point theorem. Our result generalizes Mizoguchi-Takahashi's fixed point theorem. We also provide some examples to show the generality of our work.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Takahashi's Legacy in Fixed Point Theory
    AnthonyTo-Ming Lau
    Tomonari Suzuki
    Fixed Point Theory and Applications, 2010
  • [42] Takahashi's Legacy in Fixed Point Theory
    Lau, Anthony To-Ming
    Suzuki, Tomonari
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [43] Equivalent Extensions to Caristi-Kirk's Fixed Point Theorem, Ekeland's Variational Principle, and Takahashi's Minimization Theorem
    Zili Wu
    Fixed Point Theory and Applications, 2010
  • [44] Equivalent Extensions to Caristi-Kirk's Fixed Point Theorem, Ekeland's Variational Principle, and Takahashi's Minimization Theorem
    Wu, Zili
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [45] Fixed point theorem for quasimonotone functions
    Redheffer, I
    Volkmann, P
    ARCHIV DER MATHEMATIK, 1998, 70 (04) : 307 - 312
  • [46] A fixed point theorem for analytic functions
    Valentin Matache
    Fixed Point Theory and Applications, 2005
  • [47] A FIXED POINT THEOREM FOR CONNECTIVITY FUNCTIONS
    GIROLO, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 696 - &
  • [48] A fixed point theorem for analytic functions
    Matache, Valentin
    FIIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (01): : 87 - 91
  • [49] A fixed point theorem for discontinuous functions
    Herings, P. Jean-Jacques
    van der Laan, Gerard
    Talman, Dolf
    Yang, Zaifu
    OPERATIONS RESEARCH LETTERS, 2008, 36 (01) : 89 - 93
  • [50] A fixed point theorem for monotone functions
    Persson, Hakan
    APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1207 - 1209