A multiresolution diffused expectation-maximization algorithm for medical image segmentation

被引:11
|
作者
Boccignone, Giuseppe
Napoletano, Paolo
Caggiano, Vittorio
Ferraro, Mario
机构
[1] Univ Salerno, DIIIE, Nat Computat Lab, I-84084 Fisciano, SA, Italy
[2] Univ Naples Federico II, Dipartimento Informat & Sistemist, I-80125 Naples, Italy
[3] Univ Turin, Dipartimento Fis Sperimentale, I-10100 Turin, Italy
关键词
image segmentation; expectation-maximization; multiresolution;
D O I
10.1016/j.compbiomed.2005.10.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM) algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually reside at different scales. At each scale segmentation is carried out via the expectation-maximization algorithm, coupled with anisotropic diffusion on classes, in order to account for the spatial dependencies among pixels. This new approach is validated via experiments on a variety of medical images and its performance is compared with more standard methods. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 50 条
  • [41] An Online Expectation-Maximization Algorithm for Changepoint Models
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Doucet, Arnaud
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 906 - 926
  • [42] Diffused expectation maximisation for image segmentation
    Boccignone, G
    Ferraro, M
    Napoletano, P
    ELECTRONICS LETTERS, 2004, 40 (18) : 1107 - 1108
  • [43] Maximum-entropy expectation-maximization algorithm for image processing and sensor networks
    Hong, Hunsop
    Schonfeld, Dan
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2007, PTS 1 AND 2, 2007, 6508
  • [44] A region-based image fusion method using the Expectation-Maximization algorithm
    Yang, Jinzhong
    Blum, Rick S.
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 468 - 473
  • [45] Non-rigid Multimodal Image Registration Based on the Expectation-Maximization Algorithm
    Arce-Santana, Edgar
    Campos-Delgado, Daniel U.
    Vigueras-Gomez, Flavio
    Reducindo, Isnardo
    Mejia-Rodriguez, Aldo R.
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2013, 2014, 8333 : 36 - 47
  • [46] EXPECTATION MAXIMIZATION SEGMENTATION ALGORITHM FOR CLASSIFICATION OF HUMAN GENOME IMAGE
    Menaka, D.
    Vaidyanathan, S. Ganesh
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 1055 - 1059
  • [47] Using the expectation-maximization algorithm for depth estimation and segmentation of multi-view images
    Grammalidis, N
    Bleris, L
    Strintzis, MG
    FIRST INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING VISUALIZATION AND TRANSMISSION, 2002, : 686 - 689
  • [48] Hybrid Genetic and Variational Expectation-Maximization Algorithm for Gaussian-Mixture-Model-Based Brain MR Image Segmentation
    Tian, GuangJian
    Xia, Yong
    Zhang, Yanning
    Feng, Dagan
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (03): : 373 - 380
  • [49] Local expectation-maximization attention network for image denoising
    Li Ze-tian
    Lei Zhi-chun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (04) : 350 - 359
  • [50] A variational Expectation-Maximization algorithm for temporal data clustering
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 206 - 228