Long-time asymptotics for a classical particle interacting with a scalar wave field

被引:0
|
作者
Komech, A
Spohn, H
Kunze, M
机构
[1] UNIV MUNICH,D-80333 MUNICH,GERMANY
[2] UNIV COLOGNE,INST MATH,D-50931 COLOGNE,GERMANY
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hamiltonian system consisting of scalar wave held and a single particle coupled in a translation invariant manner. The point particle is subject to a confining external potential. The stationary solutions of the system are a Coulomb type wave field centered at those particle positions for which the external force vanishes. We prove that solutions of finite energy converge, in suitable local energy seminorms, to the set of stationary solutions in the long time limit t --> +/-infinity. The rate of relaxation to a stable stationary solution is determined by spatial decay of initial data.
引用
收藏
页码:307 / 335
页数:29
相关论文
共 50 条
  • [31] LONG-TIME BEHAVIOR IN SCALAR CONSERVATION LAWS
    Debussche, Arnaud
    Vovelle, J.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (3-4) : 225 - 238
  • [32] Semidiscretization and long-time asymptotics of nonlinear diffusion equations
    Carrillo, Jose A.
    Di Francesco, Marco
    Gualdani, Maria P.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 : 21 - 53
  • [33] Long-time asymptotics of kinetic models of granular flows
    Li, HL
    Toscani, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) : 407 - 428
  • [34] Long-time asymptotics for the Toda lattice in the soliton region
    Krueger, Helge
    Teschl, Gerald
    MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (03) : 585 - 602
  • [35] Long-time asymptotics with geometric singularities in the spatial variables
    Krainer, T
    Schulze, BW
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS: ISRAEL MATHEMATICAL CONFERENCE PROCEEDINGS, 2004, 364 : 103 - 126
  • [36] LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION
    De Monvel, Anne Boutet
    Kostenko, Aleksey
    Shepelsky, Dmitry
    Teschl, Gerald
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1559 - 1588
  • [37] Long-time asymptotics for the Toda lattice in the soliton region
    Helge Krüger
    Gerald Teschl
    Mathematische Zeitschrift, 2009, 262 : 585 - 602
  • [38] Long-Time Asymptotics of Kinetic Models of Granular Flows
    Hailiang Li
    Giuseppe Toscani
    Archive for Rational Mechanics and Analysis, 2004, 172 : 407 - 428
  • [40] SHARP LONG-TIME ASYMPTOTICS FOR CHEMOTAXIS WITH FREE BOUNDARY
    Li, Hai-Liang
    Perthame, Benoit
    Wen, Xinmei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) : 2027 - 2083