Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative

被引:3
|
作者
Benchohra, Mouffak [1 ,2 ]
Bouriah, Soufyane [1 ,3 ]
Henderson, Johnny [4 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Hassiba Benbouali Univ, Fac Exact Sci & Informat, Dept Math, POB 151, Chlef 02000, Algeria
[4] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Hilfer-Katugampola fractional derivative; Nonlocal initial value problem; Existence; Uniqueness; Stability; Fixed point;
D O I
10.1007/s13370-020-00864-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence and uniqueness of solutions to nonlocal initial value problem for differential equations with Hilfer-Katugampola type fractional derivative, also, the stability of this class of problem. The arguments are based upon the Banach contraction principle, and Schaefer's fixed point theorem. An example is included to show the applicability of our results.
引用
收藏
页码:829 / 851
页数:23
相关论文
共 50 条
  • [41] Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane
    Amel Berhail
    Nora Tabouche
    Jehad Alzabut
    Mohammad Esmael Samei
    [J]. Advances in Continuous and Discrete Models, 2022
  • [42] Existence and stability of solution for nonlinear differential equations with ψ-Hilfer fractional derivative
    Zhou, Jue-liang
    Zhang, Shu-qin
    He, Yu-bo
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121 (121)
  • [43] Some k-fractional extension of Gruss-type inequalities via generalized Hilfer-Katugampola derivative
    Naz, Samaira
    Naeem, Muhammad Nawaz
    Chu, Yu-Ming
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [44] Stability of Nonlinear Implicit Differential Equations with Caputo-Katugampola Fractional Derivative
    Dai, Qun
    Zhang, Yunying
    [J]. MATHEMATICS, 2023, 11 (14)
  • [45] Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations
    Abdelkrim Salim
    Mouffak Benchohra
    Erdal Karapınar
    Jamal Eddine Lazreg
    [J]. Advances in Difference Equations, 2020
  • [46] Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations
    Salim, Abdelkrim
    Benchohra, Mouffak
    Karapinar, Erdal
    Lazreg, Jamal Eddine
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [47] Ulam-Hyers type stability for ψ-Hilfer fractional differential equations with impulses and delay
    Lima, K. B.
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [48] FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND GENERALIZED HILFER FRACTIONAL DERIVATIVE
    Wahash, H. A.
    Abdo, M. S.
    Panchal, S. K.
    [J]. UFA MATHEMATICAL JOURNAL, 2019, 11 (04): : 151 - 170
  • [49] Stability of nonlocal fractional Langevin differential equations involving fractional integrals
    Zhuoyan Gao
    Xiulan Yu
    [J]. Journal of Applied Mathematics and Computing, 2017, 53 : 599 - 611
  • [50] Stability of nonlocal fractional Langevin differential equations involving fractional integrals
    Gao, Zhuoyan
    Yu, Xiulan
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 599 - 611