Equivalence of two methods for constructing tight Gabor frames

被引:12
|
作者
Janssen, AJEM [1 ]
Bölcskei, H
机构
[1] Philips Res Labs, Eindhoven, Netherlands
[2] Stanford Univ, Informat Syst Lab, Stanford, CA 94305 USA
基金
奥地利科学基金会;
关键词
signal representation; transforms;
D O I
10.1109/97.833003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, in the context of Orthogonal Frequency Division Multiplexing (OFDM), a new method (FAB-method) [11] for constructing tight Gabor frames (with redundancy 2) from a (non-tight) Gaussian g was proposed, In this letter, we prove that the FAB-method yields the tight window function canonically associated to the Gaussian, We furthermore provide a necessary and sufficient condition on the initial window function g in the Zak transform domain for the FAB-method to yield a tight Gabor frame. This yields a characterization of all initial window functions g for which the FAB-method works.
引用
收藏
页码:79 / 82
页数:4
相关论文
共 50 条
  • [31] Finite two-distance tight frames
    Barg, Alexander
    Glazyrin, Alexey
    Okoudjou, Kasso A.
    Yu, Wei-Hsuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 163 - 175
  • [32] Symmetric wavelet tight frames with two generators
    Selesnick, IW
    Abdelnour, AF
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) : 211 - 225
  • [33] Digital Gabor filters do generate MRA-based wavelet tight frames
    Ji, Hui
    Shen, Zuowei
    Zhao, Yufei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (01) : 87 - 108
  • [34] Matrix Representation of Magnetic Pseudo-Differential Operators via Tight Gabor Frames
    Cornean, Horia D.
    Helffer, Bernard
    Purice, Radu
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (02)
  • [35] Weighted irregular Gabor tight frames and dual systems using windows in the Schwartz class
    Gabardo, Jean-Pierre
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (03) : 635 - 672
  • [36] Partial Gabor frames and dual frames
    Tian, Yu
    Jia, Hui-Fang
    He, Guo-Liang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
  • [37] IRREGULAR WAVELET FRAMES AND GABOR FRAMES
    Ole Christensen
    Analysis in Theory and Applications, 2001, (03) : 90 - 100
  • [38] Density of Gabor frames
    Christensen, O
    Deng, BQ
    Heil, C
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 7 (03) : 292 - 304
  • [39] Excesses of Gabor frames
    Balan, R
    Casazza, PG
    Heil, C
    Landau, Z
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (02) : 87 - 106
  • [40] The Mystery of Gabor Frames
    Karlheinz Gröchenig
    Journal of Fourier Analysis and Applications, 2014, 20 : 865 - 895