Contributions to Bayesian Structural Equation Modeling

被引:1
|
作者
Demeyer, Severine [1 ,2 ,3 ]
Fischer, Nicolas [1 ]
Saporta, Gilbert [2 ,3 ]
机构
[1] LNE, Lab Natl Metrol & Essais, 29 Ave Roger Hennequin, F-78197 Frappes, France
[2] CNAM, Chaire Stat Appl, Paris, France
[3] CNAM, CEDRIC, Paris, France
关键词
structural equation modeling; Bayesian statistics; Gibbs sampling; latent variables; identifiability;
D O I
10.1007/978-3-7908-2604-3_46
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Structural equation models (SEMs) are multivariate latent variable models used to model causality structures in data. A Bayesian estimation and validation of SEMs is proposed and identifiability of parameters is studied. The latter study shows that latent variables should be standardized in the analysis to ensure identifiability. This heuristics is in fact introduced to deal with complex identifiability constraints. To illustrate the point, identifiability constraints are calculated in a marketing application, in which posterior draws of the constraints are derived from the posterior conditional distributions of parameters.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [2] Bayesian analysis of structural equation Modeling
    Shigemasu, K
    Hoshino, T
    Ohmori, T
    [J]. MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 207 - 216
  • [3] Bayesian structural equation modeling for the health index
    Yanuar, Ferra
    Ibrahim, Kamarulzaman
    Jemain, Abdul Aziz
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (06) : 1254 - 1269
  • [4] Efficient Bayesian Structural Equation Modeling in Stan
    Merkle, Edgar C.
    Fitzsimmons, Ellen
    Uanhoro, James
    Goodrich, Ben
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (06): : 1 - 22
  • [5] A Systematic Evaluation and Comparison Between Exploratory Structural Equation Modeling and Bayesian Structural Equation Modeling
    Guo, Jiesi
    Marsh, Herbert W.
    Parker, Philip D.
    Dicke, Theresa
    Luedtke, Oliver
    Diallo, Thierno M. O.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (04) : 529 - 556
  • [6] Structural Equation Modeling, A Bayesian Approach.
    Palomo, Jesus
    [J]. PSYCHOMETRIKA, 2009, 74 (04) : 747 - 748
  • [7] Modeling Misspecification as a Parameter in Bayesian Structural Equation Models
    Uanhoro, James Ohisei
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2024, 84 (02) : 245 - 270
  • [8] Hopes and Cautions in Implementing Bayesian Structural Equation Modeling
    MacCallum, Robert C.
    Edwards, Michael C.
    Cai, Li
    [J]. PSYCHOLOGICAL METHODS, 2012, 17 (03) : 340 - 345
  • [9] Comparison of Frequentist and Bayesian Regularization in Structural Equation Modeling
    Jacobucci, Ross
    Grimm, Kevin J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (04) : 639 - 649
  • [10] Bayesian Structural Equation Modeling in Sport and Exercise Psychology
    Stenling, Andreas
    Ivarsson, Andreas
    Johnson, Urban
    Lindwall, Magnus
    [J]. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2015, 37 (04): : 410 - 420