Efficient Bayesian Structural Equation Modeling in Stan

被引:26
|
作者
Merkle, Edgar C. [1 ]
Fitzsimmons, Ellen [2 ]
Uanhoro, James [3 ]
Goodrich, Ben [4 ]
机构
[1] Univ Missouri, Dept Psychol Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Columbia, MO 65211 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
[4] Columbia Univ, New York, NY 10027 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2021年 / 100卷 / 06期
关键词
Bayesian SEM; blavaan; JAGS; MCMC; structural equation model; Stan; R PACKAGE; COVARIANCE MATRICES; WISHART; PRIORS;
D O I
10.18637/jss.v100.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or hidden variables), often leading to slow and inefficient posterior sampling. In this paper, we describe and illustrate a general, efficient approach to Bayesian SEM estimation in Stan, contrasting it with previous implementations in R package blavaan (Merkle and Rosseel 2018). After describing the approaches in detail, we conduct a practical comparison under multiple scenarios. The comparisons show that the new approach is clearly better. We also discuss ways that the approach may be extended to other models that are of interest to psychometricians.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Contributions to Bayesian Structural Equation Modeling
    Demeyer, Severine
    Fischer, Nicolas
    Saporta, Gilbert
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 469 - 476
  • [2] Structural equation modeling: A Bayesian approach
    Hayashi, Kentaro
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2008, 15 (03) : 534 - 540
  • [3] Stan Functions for Bayesian Pharmacometric Modeling
    Margossian, Charles
    Gillespie, William R.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2016, 43 : S52 - S52
  • [4] Bayesian analysis of structural equation Modeling
    Shigemasu, K
    Hoshino, T
    Ohmori, T
    [J]. MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 207 - 216
  • [5] Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
    Margossian, Charles C.
    Zhang, Yi
    Gillespie, William R.
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (09): : 1151 - 1169
  • [6] Bayesian workflow for disease transmission modeling in Stan
    Grinsztajn, Leo
    Semenova, Elizaveta
    Margossian, Charles C.
    Riou, Julien
    [J]. STATISTICS IN MEDICINE, 2021, 40 (27) : 6209 - 6234
  • [7] Bayesian structural equation modeling for the health index
    Yanuar, Ferra
    Ibrahim, Kamarulzaman
    Jemain, Abdul Aziz
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (06) : 1254 - 1269
  • [8] Structural Equation Modeling, A Bayesian Approach.
    Palomo, Jesus
    [J]. PSYCHOMETRIKA, 2009, 74 (04) : 747 - 748
  • [9] A Systematic Evaluation and Comparison Between Exploratory Structural Equation Modeling and Bayesian Structural Equation Modeling
    Guo, Jiesi
    Marsh, Herbert W.
    Parker, Philip D.
    Dicke, Theresa
    Luedtke, Oliver
    Diallo, Thierno M. O.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (04) : 529 - 556
  • [10] Modeling Misspecification as a Parameter in Bayesian Structural Equation Models
    Uanhoro, James Ohisei
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2024, 84 (02) : 245 - 270