Gravity Field Determination at the AIUB - The Celestial Mechanics Approach

被引:0
|
作者
Prange, L. [1 ]
Jaeggi, A. [1 ]
Beutler, G. [1 ]
Dach, R. [1 ]
Mervart, L. [2 ]
机构
[1] Univ Bern, Astron Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Czech Tech Univ, Inst Adv Geodesy, CR-16629 Prague, Czech Republic
来源
关键词
CHAMP; Gravity field determination; Pseudo-stochastic parameters; Accelerometer data; MODEL;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present the gravity field model AIUB-CHAMP01S, which has been generated using the Celestial Mechanics approach. GPS-derived kinematic positions of low Earth orbiters (LEOs) are used as pseudo-observations to solve for the Earth's gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic (SH) coefficients, arc-specific parameters (e.g., accelerometer calibration parameters, dynamical parameters, or pseudo-stochastic parameters) are set up and normal equations are written for all daily LEO arcs. The daily normal equations are combined to weekly, monthly, and annual systems before inversion. The parametrization can be modified on the normal equation level without a new time-consuming set up of the daily normal equations. The results based on one year of CHAMP data demonstrate that the Celestial Mechanics approach is comparable in quality with other approaches.
引用
收藏
页码:353 / +
页数:3
相关论文
共 50 条
  • [21] Intuitionism and celestial mechanics
    Pambuccian, V
    MATHEMATICAL INTELLIGENCER, 1997, 19 (04): : 5 - 6
  • [22] Equations of celestial mechanics
    不详
    PERIODIC SOLUTIONS OF THE N-BODY PROBLEM, 1999, 1719 : 9 - 18
  • [23] INTEGRABILITY OF CELESTIAL MECHANICS
    LOSCO, L
    JOURNAL DE MECANIQUE, 1974, 13 (02): : 197 - 223
  • [24] COSMOLOGY AND CELESTIAL MECHANICS
    SZEBEHELY, V
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (09) : 1173 - 1180
  • [25] CELESTIAL MECHANICS AND ASTRODYNAMICS
    LAWDEN, DF
    JOURNAL OF THE ROYAL AERONAUTICAL SOCIETY, 1965, 69 (654): : 418 - &
  • [26] The celestial mechanics of Newton
    Dipankar Bhattacharya
    Resonance, 2006, 11 (12) : 35 - 44
  • [27] Celestial mechanics (Stellafane)
    Granstrom, Chris
    SMITHSONIAN, 2008, 39 (03) : 25 - 25
  • [28] CELESTIAL MECHANICS EXPERIMENT
    ANDERSON, JD
    PEASE, GE
    EFRON, L
    TAUSWORTHE, RC
    SCIENCE, 1967, 158 (3809) : 1689 - +
  • [29] Parabolic orbits in Celestial Mechanics: a functional-analytic approach
    Boscaggin, Alberto
    Dambrosio, Walter
    Feltrin, Guglielmo
    Terracini, Susanna
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 123 (02) : 203 - 230
  • [30] CELESTIAL MECHANICS AND ASTRODYNAMICS
    TOMPKINS, EH
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1966, 13 (01): : 52 - &