Bootstrapping pseudolikelihood models for clustered binary data

被引:8
|
作者
Aerts, M [1 ]
Claeskens, G [1 ]
机构
[1] Limburgs Univ Ctr, Ctr Stat, B-3590 Diepenbeek, Belgium
关键词
clustered binary data; developmental toxicity; exponential family; parametric bootstrap; pseudolikelihood;
D O I
10.1023/A:1003902206203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic properties of the parametric bootstrap procedure for maximum pseudolikelihood estimators and hypothesis tests are studied in the general framework of associated populations. The technique is applied to the analysis of toxicological experiments which, based on pseudolikelihood inference for clustered binary data, fits into this framework. It is shown that the bootstrap approximation can be used as an interesting alternative to the classical asymptotic distribution of estimators and test statistics. Finite sample simulations for clustered binary data models confirm the asymptotic theory and indicate some substantial improvements.
引用
收藏
页码:515 / 530
页数:16
相关论文
共 50 条
  • [41] Comparison of operational characteristics for binary tests with clustered data
    Kwak, Minjung
    Um, Sang-Won
    Jung, Sin-Ho
    STATISTICS IN MEDICINE, 2015, 34 (15) : 2325 - 2333
  • [42] An exponential family model for clustered multivariate binary data
    Molenberghs, G
    Ryan, LM
    ENVIRONMETRICS, 1999, 10 (03) : 279 - 300
  • [43] CONFOUNDING IN REGRESSION-MODELS FOR LONGITUDINAL OR CLUSTERED BINARY OUTCOMES
    PALTA, M
    CHAO, WH
    YOUNG, T
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 141 (11) : S82 - S82
  • [44] On pseudolikelihood inference for semiparametric models with boundary problems
    Chen, Y.
    Ning, J.
    Ning, Y.
    Liang, K. -Y.
    Bandeen-Roche, K.
    BIOMETRIKA, 2017, 104 (01) : 165 - 179
  • [45] Using clustered data to develop biomass allometric models: The consequences of ignoring the clustered data structure
    Dutca, Ioan
    Stancioiu, Petru Tudor
    Abrudan, Ioan Vasile
    Ioras, Florin
    PLOS ONE, 2018, 13 (08):
  • [46] LATENT VARIABLE MODELS FOR CLUSTERED ORDINAL DATA
    QU, YS
    PIEDMONTE, MR
    MEDENDORP, SV
    BIOMETRICS, 1995, 51 (01) : 268 - 275
  • [47] Partial linear regression models for clustered data
    Chen, K
    Jin, ZZ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 195 - 204
  • [48] Marginal structural models for multilevel clustered data
    Wu, Yujie
    Langworthy, Benjamin
    Wang, Molin
    BIOSTATISTICS, 2022, 23 (04) : 1056 - 1073
  • [49] Augmented mixed models for clustered proportion data
    Bandyopadhyay, Dipankar
    Galvis, Diana M.
    Lachos, Victor H.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (02) : 880 - 897
  • [50] Marginal models for zero inflated clustered data
    Hall, DB
    Zhang, ZG
    STATISTICAL MODELLING, 2004, 4 (03) : 161 - 180