Multicolored Hamilton cycles and perfect matchings in pseudorandom graphs

被引:12
|
作者
Kuehn, Daniela [1 ]
Osthus, Deryk [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
Hamilton cycles; perfect matchings; random graphs; pseudorandom graphs;
D O I
10.1137/050627010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 0 < p < 1, we prove that a pseudorandom graph G with edge density p and sufficiently large order has the following property: Consider any red/blue-coloring of the edges of G and let r denote the proportion of edges which have the color red. Then there is a Hamilton cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect matchings instead of Hamilton cycles. We also prove a bipartite version which is used elsewhere to give a minimum-degree condition for the existence of a Hamilton cycle in a 3-uniform hypergraph.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 50 条
  • [1] POWERS OF HAMILTON CYCLES IN PSEUDORANDOM GRAPHS
    Allen, Peter
    Bottcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    [J]. COMBINATORICA, 2017, 37 (04) : 573 - 616
  • [2] Powers of Hamilton Cycles in Pseudorandom Graphs
    Allen, Peter
    Boettcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    [J]. LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 355 - 366
  • [3] Powers of Hamilton cycles in pseudorandom graphs
    Peter Allen
    Julia Böttcher
    Hiệp Hàn
    Yoshiharu Kohayakawa
    Yury Person
    [J]. Combinatorica, 2017, 37 : 573 - 616
  • [4] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    [J]. SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [5] Perfect matchings extend to Hamilton cycles in hypercubes
    Fink, Jiri
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1074 - 1076
  • [6] Hamilton cycles and perfect matchings in the KPKVB model
    Fountoulakis, Nikolaos
    Mitsche, Dieter
    Muller, Tobias
    Schepers, Markus
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 131 (131) : 340 - 358
  • [7] Rainbow Matchings and Hamilton Cycles in Random Graphs
    Bal, Deepak
    Frieze, Alan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (03) : 503 - 523
  • [8] On perfect matchings and Hamilton cycles in sums of random trees
    Frieze, A
    Karonski, M
    Thoma, L
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (02) : 208 - 216
  • [9] Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees
    Markstrom, Klas
    Rucinski, Andrzej
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (05) : 677 - 687
  • [10] Rainbow perfect matchings and Hamilton cycles in the random geometric graph
    Bal, Deepak
    Bennett, Patrick
    Perez-Gimenez, Xavier
    Pralat, Pawel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) : 587 - 606