On perfect matchings and Hamilton cycles in sums of random trees

被引:2
|
作者
Frieze, A [1 ]
Karonski, M
Thoma, L
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Adam Mickiewicz Univ, Poznan, Poland
[4] Rutgers State Univ, DIMACS, Piscataway, NJ 08855 USA
关键词
sums of random trees; perfect matching; Hamilton cycle;
D O I
10.1137/S0895480196313790
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the sum of two random trees possesses with high probability a perfect matching and the sum of five random trees possesses with high probability a Hamilton cycle.
引用
收藏
页码:208 / 216
页数:9
相关论文
共 50 条
  • [1] Rainbow perfect matchings and Hamilton cycles in the random geometric graph
    Bal, Deepak
    Bennett, Patrick
    Perez-Gimenez, Xavier
    Pralat, Pawel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) : 587 - 606
  • [2] Perfect matchings extend to Hamilton cycles in hypercubes
    Fink, Jiri
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1074 - 1076
  • [3] Hamilton cycles and perfect matchings in the KPKVB model
    Fountoulakis, Nikolaos
    Mitsche, Dieter
    Muller, Tobias
    Schepers, Markus
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 131 (131) : 340 - 358
  • [4] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    [J]. SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [5] Multicolored Hamilton cycles and perfect matchings in pseudorandom graphs
    Kuehn, Daniela
    Osthus, Deryk
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (02) : 273 - 286
  • [6] Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees
    Markstrom, Klas
    Rucinski, Andrzej
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (05) : 677 - 687
  • [7] Rainbow Matchings and Hamilton Cycles in Random Graphs
    Bal, Deepak
    Frieze, Alan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (03) : 503 - 523
  • [8] Cycles and perfect matchings
    Haglund, J
    Remmel, JB
    [J]. DISCRETE MATHEMATICS, 2004, 274 (1-3) : 93 - 108
  • [9] On trees with perfect matchings
    Molitierno, JJ
    Neumann, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 75 - 85
  • [10] Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs
    Condon, Padraig
    Diaz, Alberto Espuny
    Kuhn, Daniela
    Osthus, Deryk
    Kim, Jaehoon
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):