Sea ice segmentation using Markov random fields

被引:0
|
作者
Yue, B [1 ]
Clausi, DA [1 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tools are required to assist the identification of pertinent classes in SAR sea ice imagery. Texture models offer a mean of performing this task. The texture information in SAR sea ice imagery can be characterized by two Markov random field models: the Gauss model for conditional distribution of the observed intensity image and the discrete model for the underlying texture label image. The segmentation can be implemented as an optimization process of maximizing a posteriori distribution in a Bayesian framework.
引用
收藏
页码:1877 / 1879
页数:3
相关论文
共 50 条
  • [21] Sequence Segmentation Using Semi-Markov Conditional Random Fields
    Sunita Sarawagi
    [J]. Journal of the Indian Institute of Science, 2019, 99 : 215 - 224
  • [22] Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery
    Clausi, DA
    Yue, B
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (01): : 215 - 228
  • [23] A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields
    Wang, Hui
    Wellmann, J. Florian
    Li, Zhao
    Wang, Xiangrong
    Liang, Robert Y.
    [J]. MATHEMATICAL GEOSCIENCES, 2017, 49 (02) : 145 - 177
  • [24] A segmentation model using compound Markov random fields based on a boundary model
    Wu, Jue
    Chung, Albert C. S.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) : 241 - 252
  • [25] PET image segmentation using a Gaussian mixture model and Markov random fields
    Layer T.
    Blaickner M.
    Knäusl B.
    Georg D.
    Neuwirth J.
    Baum R.P.
    Schuchardt C.
    Wiessalla S.
    Matz G.
    [J]. EJNMMI Physics, 2 (1) : 1 - 15
  • [26] A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields
    Hui Wang
    J. Florian Wellmann
    Zhao Li
    Xiangrong Wang
    Robert Y. Liang
    [J]. Mathematical Geosciences, 2017, 49 : 145 - 177
  • [27] Multiscale Bayesian texture segmentation using neural networks and Markov random fields
    Tae Hyung Kim
    Il Kyu Eom
    Yoo Shin Kim
    [J]. Neural Computing and Applications, 2009, 18 : 141 - 155
  • [28] Cerebral magnetic resonance image segmentation using fuzzy Markov random fields
    Ruan, S
    Bloyet, D
    Revenu, M
    Dou, WB
    Liao, QM
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 237 - 240
  • [29] Segmentation of motion textures using mixed-state Markov random fields
    Crivelli, T.
    Cernuschi-Frias, B.
    Bouthemy, P.
    Yao, J. F.
    [J]. MATHEMATICS OF DATA IMAGE PATTERN RECOGNITION, COMPRESSION, AND ENCRYPTION WITH APPLICATIONS IX, 2006, 6315
  • [30] An unsupervised approach of colonic polyp segmentation using adaptive markov random fields
    Sasmal, Pradipta
    Bhuyan, M. K.
    Dutta, Soumayan
    Iwahori, Yuji
    [J]. PATTERN RECOGNITION LETTERS, 2022, 154 : 7 - 15