MOMENTS AND CENTRAL LIMIT THEOREMS FOR SOME MULTIVARIATE POISSON FUNCTIONALS

被引:0
|
作者
Last, Guenter [1 ]
Penrose, Mathew D. [2 ]
Schulte, Matthias [1 ]
Thaele, Christoph [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Stochast, D-76128 Karlsruhe, Germany
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[3] Ruhr Univ Bochum, Fac Math, D-44801 Bochum, Germany
关键词
Berry-Esseen-type bound; central limit theorem; intersection process; multiple Wiener-Ito integral; Poisson process; Poisson flat process; product formula; stochastic geometry; Wiener-Ito chaos expansion; U-STATISTICS; GAUSSIAN FLUCTUATIONS; SPACE;
D O I
10.1239/aap/1401369698
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with Poisson processes on an arbitrary measurable space. Using a direct approach, we derive formulae for moments and cumulants of a vector of multiple Wiener-Ito integrals with respect to the compensated Poisson process. Also, we present a multivariate central limit theorem for a vector whose components admit a finite chaos expansion of the type of a Poisson U-statistic. The approach is based on recent results of Peccati et al. (2010), combining MalLiavin calculus and Stein's method; it also yields Berry-Esseen-type bounds. As applications, we discuss moment formulae and central limit theorems for general geometric functionals of intersection processes associated with a stationary Poisson process of k-dimensional flats in R-d.
引用
收藏
页码:348 / 364
页数:17
相关论文
共 50 条
  • [31] CENTRAL LIMIT THEOREMS FOR U-STATISTICS OF POISSON POINT PROCESSES
    Reitzner, Matthias
    Schulte, Matthias
    [J]. ANNALS OF PROBABILITY, 2013, 41 (06): : 3879 - 3909
  • [32] FUNCTIONAL CENTRAL LIMIT THEOREMS AND MODERATE DEVIATIONS FOR POISSON CLUSTER PROCESSES
    Gao, Fuqing
    Wang, Yujing
    [J]. ADVANCES IN APPLIED PROBABILITY, 2020, 52 (03) : 916 - 941
  • [33] LIMIT THEOREMS FOR DIFFERENCE ADDITIVE FUNCTIONALS
    Kartashov, Y. M.
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 83 : 69 - 79
  • [34] Limit theorems of Brownian additive functionals
    Yen, Ju-Yi
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 809 - 822
  • [35] Limit theorems for functionals of moving averages
    Ho, HC
    Hsing, T
    [J]. ANNALS OF PROBABILITY, 1997, 25 (04): : 1636 - 1669
  • [36] Limit theorems for functionals of Gaussian vectors
    Dai, Hongshuai
    Shen, Guangjun
    Kong, Lingtao
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 821 - 842
  • [37] Limit theorems of Brownian additive functionals
    Ju-Yi Yen
    [J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 809 - 822
  • [38] Variance asymptotics and central limit theory for geometric functionals of Poisson cylinder processes*
    Betken, Carina
    Schulte, Matthias
    Thaele, Christoph
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [39] CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF STATIONARY GAUSSIAN-PROCESSES
    CHAMBERS, D
    SLUD, E
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1989, 80 (03) : 323 - 346
  • [40] Limit theorems for functionals of Gaussian vectors
    Hongshuai Dai
    Guangjun Shen
    Lingtao Kong
    [J]. Frontiers of Mathematics in China, 2017, 12 : 821 - 842