Gevrey class regularity for the attractor of the laser equations

被引:6
|
作者
Menon, G [1 ]
机构
[1] Brown Univ, Div Appl Math, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
关键词
D O I
10.1088/0951-7715/12/6/304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Constantin, Foais and Gibbon proved that the laser equations (Lorenz PDE) define a dynamical system in L-2 With a C-infinity attractor. We extend this theorem to show that the attractor is contained in every Gevrey class, G(s), for 1 < s < infinity. This demonstrates a remarkable smoothing mechanism for this hyperbolic system. We consider the consequences of this theorem for finite-dimensionality of the dynamics.
引用
收藏
页码:1505 / 1510
页数:6
相关论文
共 50 条
  • [41] Gevrey regularity in time for generalized KdV type equations
    Hannah, Heather
    Himonas, A. Alexandrou
    Petronilho, Gerson
    RECENT PROGRESS ON SOME PROBLEMS IN SEVERAL COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 400 : 117 - +
  • [42] GEVREY REGULARITY OF THE SOLUTIONS OF INHOMOGENEOUS NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
    Remy, Pascal
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (06) : 1 - 28
  • [43] Gevrey regularity of subelliptic Monge-Ampere equations in the plane
    Chen, Hua
    Li, Weixi
    Xu, Chaojiang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1816 - 1841
  • [44] Gevrey Regularity in Time of Solutions to Nonlinear Partial Differential Equations
    Tahara, Hidetoshi
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2011, 18 (01): : 67 - 137
  • [45] Optimal Gevrey Regularity for Supercritical Quasi-Geostrophic Equations
    Dong Li
    Communications in Mathematical Physics, 2024, 405
  • [46] Gevrey class regularity for a dissipative Schrodinger-Poisson system
    Hafner, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 829 - 832
  • [47] Optimal Gevrey Regularity for Supercritical Quasi-Geostrophic Equations
    Li, Dong
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [48] Gevrey regularity for a class of sums of squares of monomial vector fields
    Bove, Antonio
    Mughetti, Marco
    ADVANCES IN MATHEMATICS, 2020, 373
  • [49] Gevrey regularity of solutions of real Monge-Ampere equations
    Kallel-Jallouli, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (03): : 629 - 656
  • [50] Gevrey class for locally thermoelastic beam equations
    Sozzo, Bruna T. S.
    Rivera, Jaime E. M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):