Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy

被引:43
|
作者
An, X. H. [1 ]
Song, M. [2 ]
Huang, Y. [3 ]
Liao, X. Z. [1 ]
Ringer, S. P. [1 ,4 ]
Langdon, T. G. [3 ,5 ,6 ]
Zhu, Y. T. [7 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[3] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[4] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[5] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[6] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[7] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会; 欧洲研究理事会; 澳大利亚研究理事会;
关键词
Twinning; Incoherent twin boundary; Nanocrystalline Cu alloy; Grain boundary; HIGH-PRESSURE TORSION; CENTERED-CUBIC METALS; MICROSTRUCTURAL EVOLUTION; DEFORMATION-MECHANISM; GROWTH TWINS; AL; EXAMINE; SLIP;
D O I
10.1016/j.scriptamat.2013.10.014
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the formation of deformation twins in a nanocrystalline Cu-25 at.% Ni alloy with medium stacking fault energy via the propagation of Sigma 3{11 2} incoherent twin boundaries (ITBs) that are nucleated from grain boundaries. This deformation twinning process does not generate net macroscopic strain since the Burgers vectors of the three partial dislocations on three successive {1 1 1} planes comprising an ITB sum to zero. The moving direction of ITBs determines the occurrence of twinning or detwinning in nanocrystalline materials. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 50 条
  • [21] Interactions of persistent slip bands with grain boundaries and twin boundaries
    Duan, Qiqiang
    Zhang, Hui
    Mo, Chunli
    Zhang, Zhefeng
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2006, 20 (05): : 449 - 453
  • [22] Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu
    Qian, LH
    Lu, QH
    Kong, WJ
    Lu, K
    SCRIPTA MATERIALIA, 2004, 50 (11) : 1407 - 1411
  • [23] On the nature of grain boundaries in nanocrystalline diamond
    Keblinski, P
    Phillpot, SR
    Wolf, D
    Gleiter, H
    NANOSTRUCTURED MATERIALS, 1999, 12 (1-4): : 339 - 344
  • [24] On the nature of grain boundaries in nanocrystalline diamond
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    不详
    Nanostruct Mater, 1 (339-344):
  • [25] Nanocracks at grain boundaries in nanocrystalline materials
    Gutkin, MY
    Ovid'ko, IA
    PHILOSOPHICAL MAGAZINE LETTERS, 2004, 84 (10) : 655 - 663
  • [26] On the Nature of Grain Boundaries in Nanocrystalline Diamond
    P. Keblinski
    D. Wolf
    F. Cleri
    S. R. Phillpot
    H. Gleiter
    MRS Bulletin, 1998, 23 : 36 - 41
  • [27] On the nature of grain boundaries in nanocrystalline diamond
    Keblinski, P
    Wolf, D
    Cleri, F
    Phillpot, SR
    Gleiter, H
    MRS BULLETIN, 1998, 23 (09) : 36 - 41
  • [28] PLASTIC DEFORMATION THROUGH DE-TWINNING MEDIATED BY INCOHERENT TWIN BOUNDARIES IN NANOTWINNED METALLIC ALLOYS
    Ovid'ko, I. A.
    Sheinerman, A. G.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2016, 47 (1-2) : 1 - 8
  • [29] Impact of coherent and incoherent twin boundaries on the microhardness of annealed nanocrystalline Ni-W alloys
    Lagarde, M.
    Nia, N. Shakibi
    Bourgon, J.
    Conforto, E.
    Creus, J.
    Feaugas, X.
    Savall, C.
    PHILOSOPHICAL MAGAZINE LETTERS, 2017, 97 (10) : 399 - 407
  • [30] Faceting–roughening of twin grain boundaries
    B. B. Straumal
    B. Baretzky
    O. A. Kogtenkova
    A. S. Gornakova
    V. G. Sursaeva
    Journal of Materials Science, 2012, 47 : 1641 - 1646