Self-sensing properties of bending deformation of buckypaper composites

被引:6
|
作者
Huo, Q. S. [1 ,2 ]
Jin, J. Q. [1 ]
Lu, S. W. [3 ]
Zhang, L. [4 ]
Ma, K. M. [3 ]
Wang, X. Q. [4 ]
机构
[1] Shenyang Univ Technol, Sch Mech Engn, Shenyang 100870, Liaoning, Peoples R China
[2] Liaoning Shihua Univ, Sch Mech Engn, Fushun 113001, Peoples R China
[3] Shenyang Aerosp Univ, Sch Mat Sci & Engn, Shenyang 110136, Liaoning, Peoples R China
[4] Shenyang Aerosp Univ, Acad Aeronaut & Astronaut, Shenyang 110136, Liaoning, Peoples R China
关键词
self-sensing; buckypaper; deformation; composites; CARBON NANOTUBES; MECHANICAL-PROPERTIES; BEHAVIOR; DAMAGE;
D O I
10.1088/2053-1591/ab356a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotube buckypaper is a typical mesoporous material, which can be co-cured with composite materials. It can be used for real-time health monitoring of composite structures owing to the good interfacial bonding, electrical conductivity and thermal conductivity. In this paper, carbon nanotube buckypaper composites has been prepared and the self-sensing properties of bending deformation has been characterized also. The results show that the resistance change rate of carbon nanotube buckypaper sensor is consistent with that of strain gauge. The bending strain sensing coefficients of carbon nanotube buckypaper sensor on composite top surface and bottom surface are 1.4 and 1.6 respectively. These shows that carbon nanotube buckypaper sensor can be used for strain sensing and buckypaper composites has a good self-sensing property.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Measurement techniques for self-sensing cementitious composites under flexure
    Wang, Xueying
    Al-Tabbaa, Abir
    Haigh, Stuart K.
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [32] A review on carbon-based self-sensing cementitious composites
    Han, Jinsheng
    Pan, Jinlong
    Cai, Jingming
    Li, Xiaopeng
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 265
  • [33] Multimodal Damage Detection in Self-Sensing Fiber Reinforced Composites
    Crall, Matthew D.
    Laney, Samuel G.
    Keller, Michael W.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (12)
  • [34] Prediction of mechanical and electrical properties of carbon fibre-reinforced self-sensing cementitious composites
    Kang, Zehao
    Aslani, Farhad
    Han, Baoguo
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [35] An investigation of self-sensing and mechanical properties of smart engineered cementitious composites reinforced with functional materials
    Al-Dahawi, Ali Majeed
    Abdullah, Raid D.
    Joni, Hasan Hamodi
    OPEN ENGINEERING, 2024, 14 (01):
  • [36] Cementitious composites modified by nanocarbon fillers with cooperation effect possessing excellent self-sensing properties
    Wang, Yunyang
    Zhang, Liqing
    Sun, Shengwei
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [37] Comprehending the role played by graphene nanoribbons in modulating the conductivity and self-sensing properties of cementitious composites
    Li, Peiqi
    Liu, Junxing
    Park, Jaeyeon
    Im, Sumin
    Chen, Yukun
    Sim, Sungwon
    Bae, Sungchul
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 452
  • [38] SELF-SENSING AND SELF-HEALING OF STRUCTURAL DAMAGE IN FIBER REINFORCED COMPOSITES
    Liu, Yingtao
    Rajadas, Abhishek
    Chattopadhyay, Aditi
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS - 2013, VOL 1, 2014,
  • [39] Research on Control Power and Self-sensing Technology for GMM Self-sensing Actuator
    Wang Xinhua
    Hu Shouqiang
    Ya Qianyi
    Sun Shuwen
    Cao Xiuxia
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING, PTS 1 AND 2, 2010, : 1314 - +
  • [40] Improvement of Bending Vibration Suppression Performance for Galvano Mirror by Self-Sensing Actuation
    Seki, Kenta
    Iwasaki, Makoto
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2014, 3 (01) : 10 - 17