Client Selection for Federated Learning With Non-IID Data in Mobile Edge Computing

被引:97
|
作者
Zhang, Wenyu [1 ]
Wang, Xiumin [1 ]
Zhou, Pan [2 ]
Wu, Weiwei [3 ]
Zhang, Xinglin [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[3] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Training; Servers; Computational modeling; Internet of Things; Distributed databases; Degradation; Federated learning; mobile edge computing; client selection;
D O I
10.1109/ACCESS.2021.3056919
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) has recently attracted considerable attention in internet of things, due to its capability of enabling mobile clients to collaboratively learn a global prediction model without sharing their privacy-sensitive data to the server. Despite its great potential, a main challenge of FL is that the training data are usually non-Independent, Identically Distributed (non-IID) on the clients, which may bring the biases in the model training and cause possible accuracy degradation. To address this issue, this paper aims to propose a novel FL algorithm to alleviate the accuracy degradation caused by non-IID data at clients. Firstly, we observe that the clients with different degrees of non-IID data present heterogeneous weight divergence with the clients owning IID data. Inspired by this, we utilize weight divergence to recognize the non-IID degrees of clients. Then, we propose an efficient FL algorithm, named CSFedAvg, in which the clients with lower degree of non-IID data will be chosen to train the models with higher frequency. Finally, we conduct simulations using publicly-available datasets to train deep neural networks. Simulation results show that the proposed FL algorithm improves the training performance compared with existing FL protocol.
引用
收藏
页码:24462 / 24474
页数:13
相关论文
共 50 条
  • [11] Federated Learning With Non-IID Data: A Survey
    Lu, Zili
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19188 - 19209
  • [12] A Survey of Federated Learning on Non-IID Data
    HAN Xuming
    GAO Minghan
    WANG Limin
    HE Zaobo
    WANG Yanze
    ZTE Communications, 2022, 20 (03) : 17 - 26
  • [13] Non-IID Federated Learning
    Cao, Longbing
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (02) : 14 - 15
  • [14] On the Dynamics of Non-IID Data in Federated Learning and High-Performance Computing
    Annunziata, Daniela
    Canzaniello, Marzia
    Chiaro, Diletta
    Izzo, Stefano
    Savoia, Martina
    Piccialli, Francesco
    2024 32ND EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, PDP 2024, 2024, : 230 - 237
  • [15] Adaptive Client Clustering for Efficient Federated Learning over Non-IID and Imbalanced Data
    Gong B.
    Xing T.
    Liu Z.
    Xi W.
    Chen X.
    IEEE Transactions on Big Data, 2024, 10 (06): : 1051 - 1065
  • [16] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [17] A Novel Approach for Federated Learning with Non-IID Data
    Nguyen, Hiep
    Warrier, Harikrishna
    Gupta, Yogesh
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 62 - 67
  • [18] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [19] Adaptive Federated Deep Learning With Non-IID Data
    Zhang, Ze-Hui
    Li, Qing-Dan
    Fu, Yao
    He, Ning-Xin
    Gao, Tie-Gang
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (12): : 2493 - 2506
  • [20] Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
    Wu, Hongda
    Wang, Ping
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3099 - 3111