Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization

被引:34
|
作者
Xu, Longqian [1 ]
Peng, Shuai [1 ]
Mao, Yunfeng [1 ,3 ]
Zong, Yang [1 ]
Zhang, Xiaomeng [1 ]
Wu, Deli [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[3] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
基金
国家重点研发计划;
关键词
Flow-electrode capacitive deionization; Desalination; Brackish water; Magnetic field; Magnetic carbon; Magnetic separation; PERFORMANCE; ENERGY; OPERATION; SYSTEMS;
D O I
10.1016/j.watres.2022.118290
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow-electrode capacitive deionization (FCDI) is viewed as a potential alternative to the current state-of-the-art electrodriven technology for the desalination of brackish water. However, the key shortcoming of the FCDI is still the discontinuous nature of the electrode conductive network, resulting in low electron transport efficiency and ion adsorption capacity. Here, a novel magnetic field-assisted FCDI system (termed magnetic FCDI) is proposed to enhance brackish water desalination, simply by using magnetic activated carbon (MAC) as flow electrodes. The results show that the assistance from the magnetic field enables a 78.9% - 205% enhancement in the average salt removal rate (ASRR) compared with that in the absence of a magnetic field, which benefits from the artificial manipulation of the flow electrode transport behavior. In long-term tests, the stable desalination performance of magnetic FCDI was also demonstrated with a stable ASRR of 0.70 mu mol cm(-2) min(-1) and energy-normalized removed salt (ENRS) of 8.77 mu mol J(-1). In addition, magnetic field also enables the regeneration of the electrode particles from the concentrated electrolyte. In summary, the findings indicate that the magnetic FCDI is an energy-efficient and operation convenient technology for brackish water desalination.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] New insights into the performance analysis of flow-electrode capacitive deionization using ferri/ferrocyanide redox couples for continuous water desalination
    Mani, Satheesh
    Thangapandi, Balaji
    Elangovan, Praveenraj
    Prakash, Athira
    Subbaiah, Ravichandran
    Vasudevan, Subramanyan
    Rajendran, Malini
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [22] Novel flow-electrode capacitive deionization with sodium-manganese oxide electrodes for enhancing desalination: Characterization, performance, and mechanism
    Zhao, Yan
    Song, Tianwen
    Zhang, Zhibo
    Fan, Xinyu
    Jiang, Mingzhe
    Zhang, Qiuhua
    Qian, Guangsheng
    DESALINATION, 2025, 597
  • [23] Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization
    Tang, Kexin
    Yiacoumi, Sotira
    Li, Yuping
    Tsouris, Costas
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1085 - 1094
  • [24] Membrane-electrode assemblies for flow-electrode capacitive deionization
    Linnartz, Christian J.
    Rommerskirchen, Alexandra
    Walker, Joanna
    Plankermann-Hajduk, Janis
    Koeller, Niklas
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2020, 605
  • [25] Towards pilot scale flow-electrode capacitive deionization
    Koeller, Niklas
    Mankertz, Lukas
    Finger, Selina
    Linnartz, Christian J.
    Wessling, Matthias
    DESALINATION, 2024, 572
  • [26] Flow-Electrode Capacitive Deionization for Double Displacement Reactions
    Linnartz, Christian J.
    Rommerskirchen, Alexandra
    Wessling, Matthias
    Gendel, Youri
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05): : 3906 - 3912
  • [27] Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization
    Bian, Yanhong
    Chen, Xi
    Lu, Lu
    Liang, Peng
    Ren, Zhiyong Jason
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08) : 7844 - 7850
  • [28] Energy recovery from the flow-electrode capacitive deionization
    Ma, Junjun
    Liang, Peng
    Sun, Xueliang
    Zhang, Helan
    Bian, Yanhong
    Yang, Fan
    Bai, Junfei
    Gong, Qianming
    Huang, Xia
    JOURNAL OF POWER SOURCES, 2019, 421 : 50 - 55
  • [29] Optimal conditions for efficient flow-electrode capacitive deionization
    Tang, Kexin
    Yiacoumi, Sotira
    Li, Yuping
    Gabitto, Jorge
    Tsouris, Costas
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 240
  • [30] New insights into the mechanism of flow-electrode capacitive deionization
    Nativ, Paz
    Badash, Yuval
    Gendel, Youri
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 76 : 24 - 28