Universality of the double scaling limit in random matrix models

被引:60
|
作者
Claeys, Tom [1 ]
Kuijlaars, Arno B. J. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
D O I
10.1002/cpa.20113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study unitary random matrix ensembles in the critical case where the limiting mean eigenvalue density vanishes quadratically at an interior point of the support. We establish universality of the limits of the eigenvalue correlation kernel at such a critical point in a double scaling limit. The limiting kernels are constructed out of functions associated with the second Painleve equation. This extends a result of Bleher and Its for the special case of a critical quartic potential. The two main tools we use are equilibrium measures and Riemann-Hilbert problems. In our treatment of equilibrium measures we allow a negative density near the critical point, which enables us to treat all cases simultaneously. The asymptotic analysis of the Riemann-Hilbert problem is done with the Deift-Zhou steepest-descent analysis. For the construction of a local parametrix at the critical point we introduce a modification of the approach of Baik, Deift, and Johansson so that we are able to satisfy the required jump properties exactly. (c) 2005 Wiley Periodicals, Inc.
引用
下载
收藏
页码:1573 / 1603
页数:31
相关论文
共 50 条
  • [31] Unitary matrix models and random partitions: Universality and multi-criticality
    Taro Kimura
    Ali Zahabi
    Journal of High Energy Physics, 2021
  • [32] Double scaling limits in gauge theories and matrix models
    Bertoldi, Gaetano
    Hollowood, Timothy J.
    Miramontes, J. Luis
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (06):
  • [33] UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS
    BOWICK, MJ
    BREZIN, E
    PHYSICS LETTERS B, 1991, 268 (01) : 21 - 28
  • [34] Universality for cokernels of random matrix products
    Nguyen, Hoi H.
    Van Peski, Roger
    ADVANCES IN MATHEMATICS, 2024, 438
  • [35] BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY
    Edelman, Alan
    Guionnet, A.
    Peche, S.
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (03): : 1659 - 1697
  • [36] Kibble-Zurek problem: Universality and the scaling limit
    Chandran, Anushya
    Erez, Amir
    Gubser, Steven S.
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2012, 86 (06)
  • [37] Universality in invariant random-matrix models: Existence near the soft edge
    Kanzieper, E
    Freilikher, V
    PHYSICAL REVIEW E, 1997, 55 (03): : 3712 - 3715
  • [38] Logarithmic universality in random matrix theory
    Splittorff, K
    NUCLEAR PHYSICS B, 1999, 548 (1-3) : 613 - 625
  • [39] Universality and Scaling Limit of Weakly-Bound Tetramers
    Hadizadeh, M. R.
    Yamashita, M. T.
    Tomio, Lauro
    Delfino, A.
    Frederico, T.
    IX LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2012, 1423
  • [40] DOUBLE SCALING LIMIT IN O(N) VECTOR MODELS IN D DIMENSIONS
    DIVECCHIA, P
    KATO, M
    OHTA, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (07): : 1391 - 1413