Ideals and Clots in Pointed Regular Categories

被引:15
|
作者
Janelidze, G. [2 ]
Marki, L. [3 ]
Ursini, A. [1 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat Roberto Magar, I-53100 Siena, Italy
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa
[3] Hungarian Acad Sci, A Renyi Inst Math, H-1364 Budapest, Hungary
关键词
Pointed regular category; Normal subobject; Ideal; Clot; SEMI-ABELIAN CATEGORIES;
D O I
10.1007/s10485-008-9135-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We clarify the relationship between ideals, clots, and normal subobjects in a pointed regular category with finite coproducts.
引用
下载
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [21] Mal'cev categories and fibration of pointed objects
    Bourn, D
    APPLIED CATEGORICAL STRUCTURES, 1996, 4 (2-3) : 307 - 327
  • [22] Module categories over pointed Hopf algebras
    Martín Mombelli
    Mathematische Zeitschrift, 2010, 266 : 319 - 344
  • [23] Module categories over pointed Hopf algebras
    Mombelli, Martin
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 319 - 344
  • [24] CATEGORIES OF CORRESPONDENCES OVER REGULAR CATEGORIES
    TSALENKO, MS
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (02): : 297 - 299
  • [25] On ideals of regular rings
    Chen, HY
    Li, FA
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (02) : 347 - 356
  • [26] Regular sequences of ideals
    Jothilingam, P.
    Duraivel, T.
    Bose, Sibnath
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2011, 52 (02): : 479 - 485
  • [27] On Ideals of Regular Rings
    CHEN Huan Yin Department of Mathematics
    Acta Mathematica Sinica,English Series, 2002, 18 (02) : 347 - 356
  • [28] On Ideals of Regular Rings
    Huan Yin Chen
    Fu An Li
    Acta Mathematica Sinica, 2002, 18 : 347 - 356
  • [29] Quasi-ideals and bi-ideals in categories
    Botha, SG
    NEARRINGS, NEARFIELDS, AND K-LOOPS, 1997, 426 : 219 - 224
  • [30] Traces on ideals in pivotal categories
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Virelizier, Alexis
    QUANTUM TOPOLOGY, 2013, 4 (01) : 91 - 124