Implementation of an imaging spectrometer for localization and identification of radioactive sources

被引:14
|
作者
Lemaire, H. [1 ]
Abou Khalil, R. [2 ]
Amgarou, K. [2 ]
Angelique, J. -C [3 ]
Bonnet, F. [4 ]
De Toro, D. [2 ]
Carrel, F. [1 ]
Giarmana, O. [4 ]
Gmar, M. [1 ]
Menaa, N. [2 ]
Menesguen, Y. [1 ]
Normand, S. [1 ]
Patoz, A. [4 ]
Schoepff, V. [1 ]
Talent, P.
Timi, T. [2 ]
机构
[1] CEA, LIST, F-91191 Gif Sur Yvette, France
[2] CANBERRA, F-78182 St Quentin En Yvelines, France
[3] CPC, F-14050 Caen, France
[4] CANBERRA, F-37600 Loches, France
关键词
Gamma imaging; GAMPIX; Timepix; Imaging spectrometer; Time over Threshold; GAMMA-CAMERA; PIXEL DETECTOR; CALIBRATION; RESOLUTION; TIME;
D O I
10.1016/j.nima.2014.05.118
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Spatial localization of radioactive sources is currently a main issue interesting nuclear industry as well as homeland security applications and can be achieved using gamma cameras. For several years, CEA LIST has been designing a new system, called GAMPIX, with improved sensitivity, portability and ease of use. The main remaining limitation of this system is the lack of spectrometric information, preventing the identification of radioactive materials. This article describes the development of an imaging spectrometer based on the GAMPIX technology. Experimental tests have been carried out according to both spectrometric methods enabled by the pixelatecl Timepix chip used in the GAMPIX gamma camera. The first method is based on the size of the impacts produced by a gamma-ray energy deposition in the detection matrix. The second one uses the Time over Threshold (TOT) mode of the Timepix chip and deals with time spent by pulses generated by charge preamplifiers over a user-specified threshold. Both energy resolution and sensitivity studies demonstrated the superiority of the ToT approach which will consequently be further explored. Energy calibration, tests of different pixel sizes for the Timepix chip and use of the Medipix3 chip are future milestones to improve performances of the newly implemented imaging spectrometer. (C) 2014 Elsevier B.V. All rights reserved,
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] Implementation of an Imaging Spectrometer for Localization and Identification of Radioactive Sources
    Lemaire, Hermine
    Amgarou, Khalil
    Abou Khalil, Roger
    Angelique, Jean-Claude
    Bonnet, Florent
    De Toro, Daniel
    Carrel, Frederick
    Giarmana, Olivier
    Gmar, Mehdi
    Menaa, Nabil
    Menesguen, Yves
    Normand, Stephane
    Patoz, Audrey
    Schoepff, Vincent
    Talent, Philippe
    Timi, Tebug
    2013 3RD INTERNATIONAL CONFERENCE ON ADVANCEMENTS IN NUCLEAR INSTRUMENTATION, MEASUREMENT METHODS AND THEIR APPLICATIONS (ANIMMA), 2013,
  • [2] The COCAE Detector: An instrument for localization - identification of radioactive sources
    Lambropoulos, C. P.
    Aoki, T.
    Crocco, J.
    Dieguez, E.
    Disch, C.
    Fauler, A.
    Fiederle, M.
    Hatzistratis, D.
    Gnatyuk, V. A.
    Karafasoulis, K.
    Kosyachenko, L. A.
    Levytskyi, S. N.
    Loukas, D.
    Maslyanchuk, O. L.
    Medvids, A.
    Orphanoudakis, T.
    Papadakis, I.
    Papadimitriou, A.
    Papakonstantinou, K.
    Potiriadis, C.
    Schulman, T.
    Sklyarchuk, V. V.
    Spartiotis, K.
    Theodoratos, G.
    Vlasenko, O. I.
    Zachariadou, K.
    Zervakis, E.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 3910 - 3917
  • [3] The COCAE Detector: An Instrument for Localization-Identification of Radioactive Sources
    Lambropoulos, C. P.
    Aoki, T.
    Crocco, J.
    Dieguez, E.
    Disch, C.
    Fauler, A.
    Fiederle, M.
    Hatzistratis, D.
    Gnatyuk, V. A.
    Karafasoulis, K.
    Kosyachenko, L. A.
    Levytskyi, S. N.
    Loukas, D.
    Maslyanchuk, O. L.
    Medvids, A.
    Orphanoudakis, T.
    Papadakis, I.
    Papadimitriou, A.
    Papakonstantinou, K.
    Potiriadis, C.
    Schulman, T.
    Sklyarchuk, V. V.
    Spartiotis, K.
    Theodoratos, G.
    Vlasenko, O. I.
    Zachariadou, K.
    Zervakis, E.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (05) : 2363 - 2370
  • [4] Localization of two radioactive sources on the plane
    O. V. Chernoyarov
    S. Dachian
    C. Farinetto
    Yu. A. Kutoyants
    Statistical Inference for Stochastic Processes, 2024, 27 : 1 - 23
  • [5] On the Gradient Descent Localization of Radioactive Sources
    Baidoo-Williams, Henry E.
    Dasgupta, Soura
    Mudumbai, Raghuraman
    Bai, Erwei
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (11) : 1046 - 1049
  • [6] Localization of two radioactive sources on the plane
    Chernoyarov, O. V.
    Dachian, S.
    Farinetto, C.
    Kutoyants, Yu. A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2024, 27 (01) : 1 - 23
  • [7] Neutron imaging of radioactive sources
    Hameed, F.
    Karimzadeh, S.
    Zawisky, M.
    PENETRATING RADIATION SYSTEMS AND APPLICATIONS IX, 2008, 7080
  • [8] On the Detection and Localization of Radioactive Sources in Public Facilities
    Wieneke, Monika
    Koch, Wolfgang
    Friedrich, Hermann
    Chmel, Sebastian
    FUTURE SECURITY, 2012, 318 : 376 - 387
  • [9] α, β imaging of radioactive sources in a magnetic field
    Markin, AI
    Utyugov, EG
    Cherkovets, VE
    ATOMIC ENERGY, 2000, 88 (04) : 298 - 302
  • [10] A new method for radioactive sources imaging
    Weissman, L
    Krouglov, K
    Huyse, M
    Van den Bergh, P
    Van Duppen, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 452 (1-2): : 147 - 154