Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

被引:50
|
作者
Yoshida, Aiko [1 ,4 ]
Sakai, Nobuaki [2 ]
Uekusa, Yoshitsugu [2 ]
Imaoka, Yuka [2 ]
Itagaki, Yoshitsuna [1 ]
Suzuki, Yuki [3 ]
Yoshimura, Shige H. [1 ]
机构
[1] Kyoto Univ, Grad Sch Biostudies, Kyoto, Japan
[2] Olympus Corp, R&D Grp, Hachioji, Tokyo, Japan
[3] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi, Japan
[4] Hokkaido Univ, Grad Sch Med, Kita Ku, Kita 15 Jo,Nishi 7 Chome, Sapporo, Hokkaido, Japan
来源
PLOS BIOLOGY | 2018年 / 16卷 / 05期
基金
日本学术振兴会;
关键词
ATOMIC-FORCE MICROSCOPY; BAR DOMAIN PROTEINS; IN-VIVO DYNAMICS; CORTICAL ACTIN; COATED PITS; MYOSIN-VI; LISTERIA-MONOCYTOGENES; MOLECULAR-MECHANISMS; SECRETORY GRANULES; MAMMALIAN-CELLS;
D O I
10.1371/journal.pbio.2004786
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open-close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Clathrin-mediated endocytosis: membrane factors pull the trigger
    Takei, K
    Haucke, V
    TRENDS IN CELL BIOLOGY, 2001, 11 (09) : 385 - 391
  • [22] Mechanisms of clathrin-mediated endocytosis
    Marko Kaksonen
    Aurélien Roux
    Nature Reviews Molecular Cell Biology, 2018, 19 : 313 - 326
  • [23] Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis
    Tarasenko, Daryna
    Meinecke, Michael
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (02): : 295 - 306
  • [24] Mechanisms of clathrin-mediated endocytosis
    Kaksonen, Marko
    Roux, Aurelien
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2018, 19 (05) : 313 - 326
  • [25] Visualizing clathrin-mediated endocytosis
    Emily J. Chenette
    Nature Cell Biology, 2012, 14 (6) : 566 - 566
  • [26] Mechanoregulation of clathrin-mediated endocytosis
    Ferguson, Joshua P.
    Huber, Scott D.
    Willy, Nathan M.
    Aygun, Esra
    Goker, Sevde
    Atabey, Tugba
    Kural, Comert
    JOURNAL OF CELL SCIENCE, 2017, 130 (21) : 3631 - 3636
  • [27] Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals
    Dergai, Mykola
    Iershov, Anton
    Novokhatska, Olga
    Pankivskyi, Serhii
    Rynditch, Alla
    GENOME BIOLOGY AND EVOLUTION, 2016, 8 (03): : 588 - 606
  • [28] Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis
    Daryna Tarasenko
    Michael Meinecke
    European Biophysics Journal, 2021, 50 : 295 - 306
  • [29] Clathrin-mediated endocytosis at synapses
    Jung, Nadja
    Haucke, Volker
    TRAFFIC, 2007, 8 (09) : 1129 - 1136
  • [30] Regulation of Clathrin-Mediated Endocytosis
    Mettlen, Marcel
    Chen, Ping-Hung
    Srinivasan, Saipraveen
    Danuser, Gaudenz
    Schmid, Sandra L.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 87, 2018, 87 : 871 - 896