Kawashima's relations for interpolated multiple zeta values

被引:7
|
作者
Tanaka, Tatsushi [1 ]
Wakabayashi, Noriko [2 ]
机构
[1] Kyoto Sangyo Univ, Dept Math, Fac Sci, Kita Ku, Kyoto, Kyoto 6038555, Japan
[2] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
基金
日本学术振兴会;
关键词
t-MZVs; Harmonic products; t-Kawashima relations; Cyclic sum formula;
D O I
10.1016/j.jalgebra.2015.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Yamamoto introduced polynomials in one variable t which interpolates multiple zeta and zeta-star values (t-MZVs for short), provided new prospects on two-one conjecture of Ohno and Zudilin and proved the cyclic sum formula for t-MZVs. In this paper, we establish a generalization of Kawashima's relations (t-Kawashima relations) for t-MZVs. We prove the cyclic sum formula for t-MZVs using a type of derivation operator, together with the t-Kawashima relations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条
  • [21] A class of relations among multiple zeta values
    Kawashima, Gaku
    JOURNAL OF NUMBER THEORY, 2009, 129 (04) : 755 - 788
  • [22] Relations of multiple zeta values and their algebraic expression
    Hoffman, ME
    Ohno, Y
    JOURNAL OF ALGEBRA, 2003, 262 (02) : 332 - 347
  • [23] On the duality and the derivation relations for multiple zeta values
    Kawasaki, Naho
    Tanaka, Tatsushi
    RAMANUJAN JOURNAL, 2018, 47 (03): : 651 - 658
  • [24] Symmetry on linear relations for multiple zeta values
    Ihara, Kentaro
    Ochiai, Hiroyuki
    NAGOYA MATHEMATICAL JOURNAL, 2008, 189 : 49 - 62
  • [25] Relations for multiple zeta values and Mellin transforms of multiple polylogarithms
    Okuda, J
    Ueno, K
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (02) : 537 - 564
  • [26] Linear relations of Ohno sums of multiple zeta values
    Hirose, Minoru
    Murahara, Hideki
    Onozuka, Tomokazu
    Sato, Nobuo
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 556 - 567
  • [27] DERIVATION RELATIONS AND DUALITY FOR THE SUM OF MULTIPLE ZETA VALUES
    Li, Zhonghua
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 58 (02) : 215 - 220
  • [28] Duality and double shuffle relations of multiple zeta values
    Kajikawa, Jun
    JOURNAL OF NUMBER THEORY, 2006, 121 (01) : 1 - 6
  • [29] Derivation and double shuffle relations for multiple zeta values
    Ihara, K
    Kaneko, M
    Zagier, D
    COMPOSITIO MATHEMATICA, 2006, 142 (02) : 307 - 338
  • [30] NOTE ON RELATIONS AMONG MULTIPLE ZETA(-STAR) VALUES
    Igarashi, Masahiro
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 710 - 756