Kawashima's relations for interpolated multiple zeta values

被引:7
|
作者
Tanaka, Tatsushi [1 ]
Wakabayashi, Noriko [2 ]
机构
[1] Kyoto Sangyo Univ, Dept Math, Fac Sci, Kita Ku, Kyoto, Kyoto 6038555, Japan
[2] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
基金
日本学术振兴会;
关键词
t-MZVs; Harmonic products; t-Kawashima relations; Cyclic sum formula;
D O I
10.1016/j.jalgebra.2015.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Yamamoto introduced polynomials in one variable t which interpolates multiple zeta and zeta-star values (t-MZVs for short), provided new prospects on two-one conjecture of Ohno and Zudilin and proved the cyclic sum formula for t-MZVs. In this paper, we establish a generalization of Kawashima's relations (t-Kawashima relations) for t-MZVs. We prove the cyclic sum formula for t-MZVs using a type of derivation operator, together with the t-Kawashima relations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条