共 50 条
Kawashima's relations for interpolated multiple zeta values
被引:7
|作者:
Tanaka, Tatsushi
[1
]
Wakabayashi, Noriko
[2
]
机构:
[1] Kyoto Sangyo Univ, Dept Math, Fac Sci, Kita Ku, Kyoto, Kyoto 6038555, Japan
[2] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
基金:
日本学术振兴会;
关键词:
t-MZVs;
Harmonic products;
t-Kawashima relations;
Cyclic sum formula;
D O I:
10.1016/j.jalgebra.2015.09.015
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Recently, Yamamoto introduced polynomials in one variable t which interpolates multiple zeta and zeta-star values (t-MZVs for short), provided new prospects on two-one conjecture of Ohno and Zudilin and proved the cyclic sum formula for t-MZVs. In this paper, we establish a generalization of Kawashima's relations (t-Kawashima relations) for t-MZVs. We prove the cyclic sum formula for t-MZVs using a type of derivation operator, together with the t-Kawashima relations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文