Berwald-type inequalities for Sugeno integral with respect to (α, m, r)g-concave functions

被引:0
|
作者
Li, Dong-Qing [1 ]
Cheng, Yu-Hu [1 ]
Wang, Xue-Song [1 ]
Qiao, Xue [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Berwald-type inequality; Sugeno integral; (alpha; m; r)(g)-concave function; CHEBYSHEV TYPE INEQUALITIES; FUZZY INTEGRALS; CHOQUET;
D O I
10.1186/s13660-016-0974-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of an (alpha,m, r)(g)-concave function as a generalization of a concave function. Then we establish Berwald-type inequalities for the Sugeno integral based on this kind of functions. Our work generalizes the previous results in the literature. Finally, we give some conclusions and problems for further investigations.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] NEW INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Wang, Shuhong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 744 - 753
  • [22] Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions
    Du, Ting-Song
    Liao, Jia-Gen
    Li, Yu-Jiao
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3112 - 3126
  • [23] Generalized Fractional Integral Inequalities for(h,m,s)-Convex Modified Functions of Second Type
    Napoles, Juan E.
    Bayraktar, Bahtiyar
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (02): : 69 - 82
  • [24] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 483 - 498
  • [25] k-fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions
    Rehman, Atiq Ur
    Farid, Ghulam
    Bibi, Sidra
    Jung, Chahn Yong
    Kang, Shin Min
    AIMS MATHEMATICS, 2021, 6 (01): : 882 - 892
  • [26] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [27] Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function
    Andric, Maja
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [28] MILNE-TYPE INTEGRAL INEQUALITIES FOR MODIFIED ( h, m )-CONVEX FUNCTIONS ON FRACTAL SETS
    Napoles, J. E.
    Guzman, P. M.
    Bayraktar, B.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (02): : 106 - 127
  • [29] k-fractional integral inequalities of Hadamard type for (h-m)-convex functions
    Farid, Ghulam
    Rehman, Atiq Ur
    Ul Ain, Qurat
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 119 - 140
  • [30] On some k-fractional integral inequalities of Hermite-Hadamard type for twice differentiable generalized beta (r, g)-preinvex functions
    Kashuri, Artion
    Liko, Rozana
    JOURNAL OF APPLIED ANALYSIS, 2019, 25 (01) : 59 - 72