Berwald-type inequalities for Sugeno integral with respect to (α, m, r)g-concave functions

被引:0
|
作者
Li, Dong-Qing [1 ]
Cheng, Yu-Hu [1 ]
Wang, Xue-Song [1 ]
Qiao, Xue [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Berwald-type inequality; Sugeno integral; (alpha; m; r)(g)-concave function; CHEBYSHEV TYPE INEQUALITIES; FUZZY INTEGRALS; CHOQUET;
D O I
10.1186/s13660-016-0974-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of an (alpha,m, r)(g)-concave function as a generalization of a concave function. Then we establish Berwald-type inequalities for the Sugeno integral based on this kind of functions. Our work generalizes the previous results in the literature. Finally, we give some conclusions and problems for further investigations.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Sandor Type Inequalities for Sugeno Integral with respect to General (α,m,r)-Convex Functions
    Li, Dong-Qing
    Cheng, Yu-Hu
    Wang, Xue-Song
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [2] Berwald-type inequalities for Sugeno integral with respect to (α,m,r)g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${ ( {\alpha,m,r} )_{g}}$\end{document}-concave functions
    Dong-Qing Li
    Yu-Hu Cheng
    Xue-Song Wang
    Xue Qiao
    Journal of Inequalities and Applications, 2016 (1)
  • [3] Barnes-Godunova-Levin type inequality of the Sugeno integral for an ( α, m)-concave function
    Li, Dong-Qing
    Cheng, Yu-Hu
    Wang, Xue-Song
    Zang, Shao-Fei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [4] Integral inequalities of extended Simpson type for (α, m)-ε-convex functions
    Zhang, Jun
    Pei, Zhi-Li
    Xu, Gao-Chao
    Zou, Xiao-Hui
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 122 - 129
  • [5] Integral inequalities of Simpson's type for (α, m)-convex functions
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6364 - 6370
  • [6] A NOTE ON INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR LOG-CONVEX AND LOG-CONCAVE FUNCTIONS
    Yang, Gou-Sheng
    Tseng, Kuei-Lin
    Wang, Hung-Ta
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 479 - 496
  • [7] SOME NEW INTEGRAL INEQUALITIES FOR N-TIMES DIFFERENTIABLE R-CONVEX AND R-CONCAVE FUNCTIONS
    Kadakal, Huriye
    Kadakal, Mahir
    Iscan, Imdat
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 997 - 1011
  • [8] FEJER TYPE INEQUALITIES FOR (h, g; m)-CONVEX FUNCTIONS
    Andric, Maja
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 185 - 194
  • [9] Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function
    Mohammed, Pshtiwan Othman
    FILOMAT, 2020, 34 (07) : 2401 - 2411
  • [10] On the Hadamard Type Integral Inequalities Involving Several phi - r - Convex Functions
    Sarikaya, Mehmet Zeki
    Yaldiz, Hatice
    Bozkurt, Hakan
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2015, 18 (1-2) : 1 - 8