Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals

被引:18
|
作者
Kuosmanen, Timo [1 ]
Fosgerau, Mogens [2 ]
机构
[1] MTT Agrifood Res, FIN-00410 Helsinki, Finland
[2] Tech Univ Denmark, DK-2800 Lyngby, Denmark
来源
SCANDINAVIAN JOURNAL OF ECONOMICS | 2009年 / 111卷 / 02期
关键词
Firms and production; frontier estimation; hypothesis testing; production function; productive efficiency analysis; C12; C14; D24; TIME-SERIES MODELS; NONPARAMETRIC APPROACH; CONDITIONAL SYMMETRY; NORMALITY; EFFICIENCY;
D O I
10.1111/j.1467-9442.2009.01567.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose a theoretical justification for the skewness of the inefficiency term, arguing that this skewness is the key testable hypothesis of the frontier approach. We propose to test the regression residuals for skewness in order to distinguish the two competing approaches. Our test builds directly upon the asymmetry of regression residuals and does not require any prior distributional assumptions.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [41] Testing for heteroscedasticity in regression models
    Carapeto, M
    Holt, W
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (01) : 13 - 20
  • [42] Double Probability Integral Transform Residuals for Regression Models with Discrete Outcomes
    Yang, Lu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (03) : 787 - 803
  • [43] Residuals for log-Burr XII regression models in survival analysis
    Silva, Giovana O.
    Ortega, Edwin M. M.
    Paula, Gilberto A.
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (07) : 1435 - 1445
  • [44] GRAPHICAL DIAGNOSTICS METHODS BASED ON GENERALIZED RESIDUALS FOR LOGISTIC REGRESSION MODELS
    del Carmen Pardo, Maria
    Viviani, Paola
    PAKISTAN JOURNAL OF STATISTICS, 2012, 28 (04): : 495 - 512
  • [45] Residuals and Diagnostics for Binary and Ordinal Regression Models: An Introduction to the sure Package
    Greenwell, Brandon M.
    McCarthy, Andrew J.
    Boehmke, Bradley C.
    Liu, Dungang
    R JOURNAL, 2018, 10 (01): : 381 - 394
  • [46] Spatial dependence in production frontier models
    Kassoum Ayouba
    Journal of Productivity Analysis, 2023, 60 : 21 - 36
  • [47] Spatial dependence in production frontier models
    Ayouba, Kassoum
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2023, 60 (01) : 21 - 36
  • [48] Generalized stochastic frontier production models
    Lothgren, M
    ECONOMICS LETTERS, 1997, 57 (03) : 255 - 259
  • [49] Testing for Heteroskedasticity of the Residuals in Fuzzy Rule-Based Models
    Aznarte M, Jose Luis
    Benitez, Jose M.
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT II, PROCEEDINGS, 2010, 6097 : 239 - +
  • [50] LEVERAGE, INFLUENCE AND RESIDUALS IN REGRESSION-MODELS WHEN OBSERVATIONS ARE CORRELATED
    MARTIN, RJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (05) : 1183 - 1212