An Automated Framework for Incorporating News into Stock Trading Strategies

被引:61
|
作者
Nuij, Wijnand [1 ]
Milea, Viorel [2 ]
Hogenboom, Frederik [2 ]
Frasincar, Flavius [2 ]
Kaymak, Uzay [3 ]
机构
[1] Semlab, NL-2408 ZE Alphen Aan Den Rijn, Zuid Holland, Netherlands
[2] Erasmus Univ, Erasmus Sch Econ, NL-3000 DR Rotterdam, Netherlands
[3] Eindhoven Univ Technol, Dept Ind Engn & Innovat Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Computer applications; evolutionary computing and genetic algorithms; learning; natural language processing; web text analysis; INVESTOR SENTIMENT; PRICE REACTION; INFORMATION; LANGUAGE;
D O I
10.1109/TKDE.2013.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a framework for automatic exploitation of news in stock trading strategies. Events are extracted from news messages presented in free text without annotations. We test the introduced framework by deriving trading strategies based on technical indicators and impacts of the extracted events. The strategies take the form of rules that combine technical trading indicators with a news variable, and are revealed through the use of genetic programming. We find that the news variable is often included in the optimal trading rules, indicating the added value of news for predictive purposes and validating our proposed framework for automatically incorporating news in stock trading strategies.
引用
收藏
页码:823 / 835
页数:13
相关论文
共 50 条
  • [41] Formalization of Automated Trading Systems in a Concurrent Linear Framework
    Cervesato, Iliano
    Khan, Sharjeel
    Reis, Giselle
    Zunic, Dragisa
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (292): : 1 - 14
  • [42] The Simulation Framework for Automated Trading Algorithms on Capital Markets
    Banciu, Doina
    Petrescu, Anca-Gabriela
    Oncioiu, Ionica
    Petrescu, Marius
    Bilcan, Florentina-Raluca
    Ghibanu, Adrian-Ionut
    STUDIES IN INFORMATICS AND CONTROL, 2024, 33 (04):
  • [43] Formulate Stock Trading Strategies Using DEA: A Taiwanese Case
    Hwang, Shiuh-Nan
    Chuang, Wang-Ching
    Chen, Yi-Chieh
    INFOR, 2010, 48 (02) : 75 - 81
  • [44] Adaptive stock trading strategies with deep reinforcement learning methods
    Wu, Xing
    Chen, Haolei
    Wang, Jianjia
    Troiano, Luigi
    Loia, Vincenzo
    Fujita, Hamido
    INFORMATION SCIENCES, 2020, 538 (538) : 142 - 158
  • [45] STANDARD-AND-POOR-500 TRADING STRATEGIES AND STOCK BETAS
    VIJH, AM
    JOURNAL OF FINANCE, 1993, 48 (03): : 1121 - 1121
  • [46] Entropy trading strategies reveal inefficiencies in Japanese stock market
    Efremidze, Levan
    Stanley, Darrol J.
    Kownatzki, Clemens
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2021, 75 : 464 - 477
  • [47] BOOTSTRAP TESTING OF TRADING STRATEGIES IN EMERGING BALKAN STOCK MARKETS
    Radovanov, Boris
    Marcikic, Aleksandra
    E & M EKONOMIE A MANAGEMENT, 2017, 20 (04): : 103 - 119
  • [48] Family business and stock market: Return analysis and trading strategies
    Miralles Marcelo, Jose Luis
    Miralles Quiros, Maria del Mar
    Lisboa, Ines
    REVISTA ESPANOLA DE FINANCIACION Y CONTABILIDAD-SPANISH JOURNAL OF FINANCE AND ACCOUNTING, 2012, 41 (155): : 393 - 416
  • [49] Data Analytics and Business Intelligence Framework for Stock Market Trading
    AlArmouty, Batool
    Fraihat, Salam
    2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 178 - 182
  • [50] A stock market trading framework based on deep learning architectures
    Shah, Atharva
    Gor, Maharshi
    Sagar, Meet
    Shah, Manan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 14153 - 14171