Bayesian modeling;
censored regression models;
MCMC;
scale mixtures of normal distributions;
Bayesian diagnostics;
MIXED-EFFECTS MODELS;
GIBBS SAMPLER;
INFERENCE;
HETEROGENEITY;
D O I:
10.1080/02664763.2015.1048671
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data.
机构:
Univ Estadual Campinas, Dept Estat, BR-13081970 Campinas, SP, BrazilMed Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
Lachos, Victor H.
Bandyopadhyay, Dipankar
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USAMed Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
Bandyopadhyay, Dipankar
Garay, Aldo M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Estat, BR-13081970 Campinas, SP, BrazilMed Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
机构:
Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Abanto-Valle, C. A.
Bandyopadhyay, D.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USAUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Bandyopadhyay, D.
Lachos, V. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, Campinas, SP, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Lachos, V. H.
Enriquez, I.
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ, Dept Stat, Sao Paulo, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil