Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves

被引:76
|
作者
El-Tantawy, S. A. [1 ]
Moslem, W. M. [1 ,2 ]
机构
[1] Port Said Univ, Dept Phys, Fac Sci, Port Said 42521, Egypt
[2] British Univ Egypt, Ctr Theoret Phys, Cairo, Egypt
关键词
HEAD-ON-COLLISION; ACOUSTIC SOLITARY WAVES;
D O I
10.1063/1.4879815
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Solitons (small-amplitude long-lived waves) collision and rogue waves (large-amplitude short-lived waves) in non-Maxwellian electron-positron-ion plasma have been investigated. For the solitons collision, the extended Poincare-Lighthill-Kuo perturbation method is used to derive the coupled Korteweg-de Vries (KdV) equations with the quadratic nonlinearities and their corresponding phase shifts. The calculations reveal that both positive and negative polarity solitons can propagate in the present model. At critical value of plasma parameters, the coefficients of the quadratic nonlinearities disappear. Therefore, the coupled modified KdV (mKdV) equations with cubic nonlinearities and their corresponding phase shifts have been derived. The effects of the electron-to-positron temperature ratio, the ion-to-electron temperature ratio, the positron-to-ion concentration, and the nonextensive parameter on the colliding solitons profiles and their corresponding phase shifts are examined. Moreover, generation of ion-acoustic rogue waves from small-amplitude initial perturbations in plasmas is studied in the framework of the mKdV equation. The properties of the ion-acoustic rogue waves are examined within a nonlinear Schrodinger equation (NLSE) that has been derived from the mKdV equation. The dependence of the rogue wave profile on the relevant physical parameters has been investigated. Furthermore, it is found that the NLSE that has been derived from the KdV equation cannot support the propagation of rogue waves. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Head-on collisions of ion-acoustic Korteweg-de Vries/modified Korteweg-de Vries solitons in a magnetized quantum electron-positron-ion plasma
    Malay Kumar Ghorui
    Utpal Kumar Samanta
    Prasanta Chatterjee
    Astrophysics and Space Science, 2013, 345 : 273 - 281
  • [2] Head-on collisions of ion-acoustic Korteweg-de Vries/modified Korteweg-de Vries solitons in a magnetized quantum electron-positron-ion plasma
    Ghorui, Malay Kumar
    Samanta, Utpal Kumar
    Chatterjee, Prasanta
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 345 (02) : 273 - 281
  • [3] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [4] Reflection of modified Korteweg-de Vries solitons in a negative ion plasma
    Yi, SJ
    Cooney, JL
    Kim, HS
    Amin, A
    ElZein, Y
    Lonngren, KE
    PHYSICS OF PLASMAS, 1996, 3 (02) : 529 - 535
  • [5] Korteweg-de Vries solitons in inhomogeneous plasma
    Duan, WS
    Zhao, JB
    PHYSICS OF PLASMAS, 1999, 6 (09) : 3484 - 3488
  • [6] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [7] Helical solitons in vector modified Korteweg-de Vries equations
    Pelinovsky, Dmitry E.
    Stepanyants, Yury A.
    PHYSICS LETTERS A, 2018, 382 (44) : 3165 - 3171
  • [8] Oblique collision of modified Korteweg-de Vries ion-acoustic solitons
    Nakamura, Y
    Bailung, H
    Lonngren, KE
    PHYSICS OF PLASMAS, 1999, 6 (09) : 3466 - 3470
  • [9] The coupled modified Korteweg-de Vries equations
    Tsuchida, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) : 1175 - 1187
  • [10] Chiral solitons in generalized Korteweg-de Vries equations
    Bazeia, D
    Moraes, F
    PHYSICS LETTERS A, 1998, 249 (5-6) : 450 - 454