Anomaly detection in diurnal data

被引:6
|
作者
Mata, Felipe [1 ]
Zuraniewski, Piotr [2 ,3 ,4 ]
Mandjes, Michel [2 ]
Melliae, Marco [5 ]
机构
[1] Univ Autonoma Madrid, High Performance Comp & Networking Grp, E-28049 Madrid, Spain
[2] Univ Amsterdam, Korteweg de Vries Inst Wiskunde, NL-1012 WX Amsterdam, Netherlands
[3] TNO, Delft, Netherlands
[4] AGH Univ Sci & Technol, Krakow, Poland
[5] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Turin, Italy
关键词
Anomaly detection; Diurnal pattern; Detrending; Changepoint; VoIP; EXPERIENCES;
D O I
10.1016/j.bjp.2013.11.011
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present methodological advances in anomaly detection tailored to discover abnormal traffic patterns under the presence of seasonal trends in data. In our setup we impose specific assumptions on the traffic type and nature; our study features VoIP call counts, for which several traces of real data has been used in this study, but the methodology can be applied to any data following, at least roughly, a non-homogeneous Poisson process (think of highly aggregated traffic flows). A performance study of the proposed methods, covering situations in which the assumptions are fulfilled as well as violated, shows good results in great generality. Finally, a real data example is included showing how the system could be implemented in practice. (C) 2013 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [21] Anomaly Detection from Incomplete Data
    Liu, Siyuan
    Chen, Lei
    Ni, Lionel M.
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2014, 9 (02)
  • [22] Visual Anomaly Detection in Educational Data
    Geryk, Jan
    Popelinsky, Lubos
    Triscik, Jozef
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2016, 2016, 9883 : 99 - 108
  • [23] Contextual Anomaly Detection in Text Data
    Mahapatra, Amogh
    Srivastava, Nisheeth
    Srivastava, Jaideep
    ALGORITHMS, 2012, 5 (04) : 469 - 489
  • [24] Anomaly detection for smartphone data streams
    Mirsky, Yisroel
    Shabtai, Asaf
    Shapira, Bracha
    Elovici, Yuval
    Rokach, Lior
    PERVASIVE AND MOBILE COMPUTING, 2017, 35 : 83 - 107
  • [25] Anomaly Detection in Restaurant Receipts Data
    Malashin, Ivan P.
    Masich, Igor S.
    Tynchenko, Vadim S.
    Gantimurov, Andrei P.
    Nelyub, Vladimir A.
    Borodulin, Aleksei S.
    Tokarev, Sergei I.
    Vasilev, Denis I.
    IEEE Access, 2024, 12 : 145590 - 145607
  • [26] An Anomaly Detection Framework for Twitter Data
    Kumar, Sandeep
    Khan, Muhammad Badruddin
    Abul Hasanat, Mozaherul Hoque
    Saudagar, Abdul Khader Jilani
    AlTameem, Abdullah
    AlKhathami, Mohammed
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [27] Anomaly Pattern Detection on Data Streams
    Park, Cheong Hee
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 689 - 692
  • [28] Model Checking for Data Anomaly Detection
    Ciobanu, Madalina G.
    Fasano, Fausto
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 1277 - 1286
  • [29] Anomaly detection in transactional sequential data
    Zhang, Jingwei
    Lin, Yuming
    Zhang, Huibing
    Yang, Qing
    Information Technology Journal, 2012, 11 (07) : 782 - 787
  • [30] Data mining methodology for anomaly detection in network data
    Caruso, Costantina
    Malerba, Donato
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 109 - 116