Self-organized criticality of climate change

被引:21
|
作者
Liu, Zuhan [1 ]
Xu, Jianhua [1 ]
Shi, Kai [2 ]
机构
[1] E China Normal Univ, Res Ctr East West Cooperat China, Shanghai 200241, Peoples R China
[2] Jishou Univ, Coll Biol & Environm Sci, Jishou 416000, Hunan, Peoples R China
关键词
LONG-RANGE CORRELATIONS; FOREST-FIRE MODEL; TIME-SERIES; SANDPILE MODEL; AIR-POLLUTION; SOLAR-FLARES; TARIM RIVER; POWER LAWS; AVALANCHES; NETWORKS;
D O I
10.1007/s00704-013-0929-6
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Self-organized criticality (SOC) of three climatic factors (average daily temperature, vapor pressure, and relative humidity) was studied by analyzing climate records from 1961 to 2011 in Yanqi County, northwest China. Firstly, we investigated the frequency-size distribution of three climatic factors and found that they were well approximated by power-law distribution, which suggested that climatic factor might be a manifestation of self-organized criticality. Furthermore, we introduced a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of climatic factor. Only changing the number value of decay coefficient of climatic factors, this model would give a good simulation of three climatic factors' statistical characteristics. This study showed that it was the self-organized criticality of the climate change that results in the temporal variation of climatic factors and the occurrence of large-scale climate change events triggered by SOC behavior of the minor climatic factors. So, we believed that SOC characteristics would have practical implications for climate prediction.
引用
下载
收藏
页码:685 / 691
页数:7
相关论文
共 50 条
  • [41] Self-organized criticality in the 'game of life'
    Alstrom, Preben
    Leao, Joao
    Physical Review Letters, 1994, 72 (17)
  • [42] Dehydropolymerization of monolignols and self-organized criticality
    Karmanov, A.P.
    Bogolitsyn, K.G.
    Monakov, Yu.B.
    Lunin, V.V.
    Zhurnal Fizicheskoj Khimii, 2004, 78 (01): : 139 - 144
  • [43] SELF-ORGANIZED CRITICALITY IN LAPLACIAN GROWTH
    PLA, Q
    GUINEA, F
    LOUIS, E
    PHYSICAL REVIEW A, 1990, 42 (10): : 6270 - 6273
  • [44] FRACTAL CLUSTERS AND SELF-ORGANIZED CRITICALITY
    Janosi, Imre M.
    Czirok, Andras
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1994, 2 (01) : 153 - 168
  • [45] ON SELF-ORGANIZED CRITICALITY IN NONCONSERVING SYSTEMS
    SOCOLAR, JES
    GRINSTEIN, G
    JAYAPRAKASH, C
    PHYSICAL REVIEW E, 1993, 47 (04): : 2366 - 2376
  • [46] Self-organized criticality, optimization and biodiversity
    Onody, RN
    De Castro, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (07): : 911 - 916
  • [47] Self-Organized Criticality of Solar Magnetism
    Abramenko, V. I.
    GEOMAGNETISM AND AERONOMY, 2020, 60 (07) : 801 - 803
  • [48] SELF-ORGANIZED CRITICALITY - AN EXPERIMENT WITH SANDPILES
    GRUMBACHER, SK
    MCEWEN, KM
    HALVERSON, DA
    JACOBS, DT
    LINDNER, J
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (04) : 329 - 335
  • [49] Aging in a model of self-organized criticality
    Boettcher, S
    Paczuski, M
    PHYSICAL REVIEW LETTERS, 1997, 79 (05) : 889 - 892
  • [50] Self-organized criticality and directed percolation
    Vázquez, A
    Costa, OS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (14): : 2633 - 2644