Self-organized criticality (SOC) of three climatic factors (average daily temperature, vapor pressure, and relative humidity) was studied by analyzing climate records from 1961 to 2011 in Yanqi County, northwest China. Firstly, we investigated the frequency-size distribution of three climatic factors and found that they were well approximated by power-law distribution, which suggested that climatic factor might be a manifestation of self-organized criticality. Furthermore, we introduced a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of climatic factor. Only changing the number value of decay coefficient of climatic factors, this model would give a good simulation of three climatic factors' statistical characteristics. This study showed that it was the self-organized criticality of the climate change that results in the temporal variation of climatic factors and the occurrence of large-scale climate change events triggered by SOC behavior of the minor climatic factors. So, we believed that SOC characteristics would have practical implications for climate prediction.