Engineering an Injectable Muscle-Specific Microenvironment for Improved Cell Delivery Using a Nanofibrous Extracellular Matrix Hydrogel

被引:58
|
作者
Rao, Nikhil [1 ,2 ]
Agmon, Gillie [1 ,2 ]
Tierney, Matthew T. [3 ,4 ]
Ungerleider, Jessica L. [1 ,2 ]
Braden, Rebecca L. [1 ,2 ]
Sacco, Alessandra [4 ]
Christman, Karen L. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Sanford Consortium Regenerat Med, La Jolla, CA 92037 USA
[3] Sanford Burnham Prebys Med Discovery Inst, Grad Sch Biomed Sci, La Jolla, CA 92037 USA
[4] Sanford Burnham Prebys Med Discovery Inst, Dev Aging & Regenerat Program, La Jolla, CA 92037 USA
关键词
biomaterial; muscle; myoblast; peripheral artery disease; cell delivery; cell microenvironment; injectable; SKELETAL-MUSCLE; STEM-CELLS; GROWTH-FACTOR; ISCHEMIA; MYOBLAST; TISSUE; ARTERIOGENESIS; ANGIOGENESIS; THERAPY; MODEL;
D O I
10.1021/acsnano.7b00093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Injection of skeletal muscle progenitors has the potential to be a minimally invasive treatment for a number of diseases that negatively affect vasculature and skeletal muscle, including peripheral artery disease. However, success with this approach has been limited because of poor transplant cell survival. This is primarily attributed to cell death due to extensional flow through the needle, the harsh ischemic environment of the host tissue, a deleterious immune cell response, and a lack of biophysical cues supporting exogenous cell viability. We show that engineering a muscle-specific microenvironment, using a nanofibrous decellularized skeletal muscle extracellular matrix hydrogel and skeletal muscle fibroblasts, improves myoblast viability and maturation in vitro. In vivo, this translates to improved cell survival and engraftment and increased perfusion as a result of increased vascularization. Our results indicate that a combinatorial delivery system, which more fully recapitulates the tissue microenvironment, can improve cell delivery to skeletal muscle.
引用
收藏
页码:3851 / 3859
页数:9
相关论文
共 50 条
  • [21] Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering
    Mousavi, Ali
    Mashayekhan, Shohreh
    Baheiraei, Nafiseh
    Pourjavadi, Ali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 180 : 692 - 708
  • [22] Editorial: Cell and therapeutic delivery using injectable hydrogels for tissue engineering applications
    Jalani, Ghulam
    Rizwan, Muhammad
    Akram, Muhammad Aftab
    Mujahid, Mohammad
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [23] Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix
    Kuo, Kuan-Chih
    Lin, Ruei-Zeng
    Tien, Han-Wen
    Wu, Pei-Yun
    Li, Yen-Cheng
    Melero-Martin, Juan M.
    Chen, Ying-Chieh
    ACTA BIOMATERIALIA, 2015, 27 : 151 - 166
  • [24] Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery
    Gil, Moon Soo
    Thambi, Thavasyappan
    Phan, V. H. Giang
    Kim, Seong Han
    Lee, Doo Sung
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (34) : 7140 - 7152
  • [25] Dynamic crosslinked and injectable biohydrogels as extracellular matrix mimics for the delivery of antibiotics and 3D cell culture
    Fan, Zhiping
    Cheng, Ping
    Liu, Min
    Prakash, Sangeeta
    Han, Jun
    Ding, Zhuang
    Zhao, Yanna
    Wang, Zhengping
    RSC ADVANCES, 2020, 10 (33) : 19587 - 19599
  • [26] Injectable Reverse Thermal Gel Biopolymers may Act as an Extracellular Matrix and Cell Vehicle for Cardiac Tissue Engineering
    Castellanos, Brisa M. Pena
    Park, Daewon
    Long, Carlin S. S.
    Martinelli, Valentina
    Bosi, Susanna
    Ballerini, Laura
    Prato, Maurizio
    Sucharov, Carmen
    Jeong, Mark
    Taylor, Matthew R. G.
    Shandas, Robin
    Mestroni, Luisa
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 486A - 486A
  • [27] Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering
    Park, Hansoo
    Temenoff, Johnna S.
    Tabata, Yasuhiko
    Caplan, Arnold I.
    Mikos, Antonios G.
    BIOMATERIALS, 2007, 28 (21) : 3217 - 3227
  • [28] Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering
    Yin, Heyong
    Yan, Zexing
    Bauer, Richard J.
    Peng, Jiang
    Schieker, Matthias
    Nerlich, Michael
    Docheva, Denitsa
    BIOMEDICAL MATERIALS, 2018, 13 (03)
  • [29] Hybridization of a phospholipid polymer hydrogel with a natural extracellular matrix using active cell immobilization
    Zhang, Ren
    Inoue, Yuuki
    Konno, Tomohiro
    Ishihara, Kazuhiko
    BIOMATERIALS SCIENCE, 2019, 7 (07) : 2793 - 2802
  • [30] HUMAN-MUSCLE NEURAL CELL-ADHESION MOLECULE (N-CAM) - IDENTIFICATION OF A MUSCLE-SPECIFIC SEQUENCE IN THE EXTRACELLULAR DOMAIN
    DICKSON, G
    GOWER, HJ
    BARTON, CH
    PRENTICE, HM
    ELSOM, VL
    MOORE, SE
    COX, RD
    QUINN, C
    PUTT, W
    WALSH, FS
    CELL, 1987, 50 (07) : 1119 - 1130