Understanding the Origin of Li2MnO3 Activation in Li-Rich Cathode Materials for Lithium-Ion Batteries

被引:163
|
作者
Ye, Delai [1 ,2 ]
Zeng, Guang [3 ]
Nogita, Kazuhiro [3 ]
Ozawa, Kiyoshi [4 ]
Hankel, Marlies [5 ]
Searles, Debra J. [5 ,6 ]
Wang, Lianzhou [1 ,2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Mech & Min Engn, Nihon Super Ctr Mfg Elect Mat, Brisbane, Qld 4072, Australia
[4] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[5] Univ Queensland, AIBN Ctr Theoret & Computat Mol Sci, Brisbane, Qld 4072, Australia
[6] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
关键词
high energy density batteries; in situ characterization; Li-rich cathode materials; phase activation; reaction kinetics; NICKEL MANGANESE OXIDES; X-RAY-DIFFRACTION; ELECTRODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; STRUCTURAL TRANSFORMATION; ANOMALOUS CAPACITY; MN; SURFACE; MECHANISM; EVOLUTION;
D O I
10.1002/adfm.201503276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-rich layered cathode materials have been considered as a family of promising high-energy density cathode materials for next generation lithium-ion batteries (LIBs). However, although activation of the Li2MnO3 phase is known to play an essential role in providing superior capacity, the mechanism of activation of the Li2MnO3 phase in Li-rich cathode materials is still not fully understood. In this work, an interesting Li-rich cathode material Li1.87Mn0.94Ni0.19O3 is reported where the Li2MnO3 phase activation process can be effectively controlled due to the relatively low level of Ni doping. Such a unique feature offers the possibility of investigating the detailed activation mechanism by examining the intermediate states and phases of the Li2MnO3 during the controlled activation process. Combining powerful synchrotron in situ X-ray diffraction analysis and observations using advanced scanning transmission electron microscopy equipped with a high angle annular dark field detector, it has been revealed that the subreaction of O-2 generation may feature a much faster kinetics than the transition metal diffusion during the Li2MnO3 activation process, indicating that the latter plays a crucial role in determining the Li2MnO3 activation rate and leading to the unusual stepwise capacity increase over charging cycles.
引用
收藏
页码:7488 / 7496
页数:9
相关论文
共 50 条
  • [31] A new Li-rich layered cathode with low lattice strain for lithium-ion batteries
    Ke, Bingyu
    Chu, Shiyong
    Li, Jing-Chang
    Xu, Xiangqun
    Yao, Huan
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2022, 58 (75) : 10488 - 10491
  • [32] Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries
    Tai, Zige
    Li, Xinglong
    Zhu, Wei
    Shi, Ming
    Xin, Yanfei
    Guo, Shengwu
    Wu, Yifang
    Chen, Yuanzhen
    Liu, Yongning
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 570 : 264 - 272
  • [33] In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries
    Liu Jiuding
    Zhang Yudong
    Liu Junxiang
    Li Jinhan
    Qiu Xiaoguan
    Cheng Fangyi
    ACTA CHIMICA SINICA, 2020, 78 (12) : 1426 - 1433
  • [34] A high rate Li-rich layered MNC cathode material for lithium-ion batteries
    Ates, Mehmet Nurullah
    Mukerjee, Sanjeev
    Abraham, K. M.
    RSC ADVANCES, 2015, 5 (35): : 27375 - 27386
  • [35] Effect of MgO and TiO2 Coating on the Electrochemical Performance of Li-Rich Cathode Materials for Lithium-Ion Batteries
    Xiao, Bin
    Wang, Peng-bo
    He, Zhen-jiang
    Yang, Zhuo
    Tang, Lin-bo
    An, Chang-sheng
    Zheng, Jun-chao
    ENERGY TECHNOLOGY, 2019, 7 (08)
  • [36] Synthesis and Electrochemical Characterization of nanosized Li2MnO3 Cathode Material for Lithium Ion Batteries
    Li, Shiyou
    Lei, Dan
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017), 2017, 1890
  • [37] Effects of Li2MnO3 coating on the high-voltage electrochemical performance and stability of Ni-rich layer cathode materials for lithium-ion batteries
    Zhang, Honglong
    Li, Bing
    Wang, Jing
    Wu, Bihe
    Fu, Tao
    Zhao, Jinbao
    RSC ADVANCES, 2016, 6 (27): : 22625 - 22632
  • [38] Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries
    Wang, Dandan
    Xu, Tinghua
    Li, Yaping
    Pan, Du
    Lu, Xia
    Hu, Yong-Sheng
    Dai, Sheng
    Bai, Ying
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (48) : 41802 - 41813
  • [39] Synthesis and characterization of li-rich cathode material for lithium ion batteries
    Cetin, Busra
    Camtakan, Zeyneb
    Yuca, Neslihan
    MATERIALS LETTERS, 2020, 273
  • [40] Gradient "Single-Crystal" Li-Rich Cathode Materials for High-Stable Lithium-Ion Batteries
    Wu, Tianhao
    Zhang, Xu
    Wang, Yinzhong
    Zhang, Nian
    Li, Haifeng
    Guan, Yong
    Xiao, Dongdong
    Liu, Shiqi
    Yu, Haijun
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (04)